Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 79-88 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daroogheh N, Karimi E, Ghorashi S B. Designing and Fabrication of Electrochromic Windows Using Tungsten Oxide Films Prepared Through Sol-gel Coating on a Glass. IJOP. 2019; 13 (2) :79-88
URL: http://ijop.ir/article-1-336-en.html
Department of Physics, Faculty of Physics, University of Kashan
Abstract:   (361 Views)
In this study, a sol-gel peroxotungstic acid sol was employed to deposit tungsten oxide (WO3) films by the spin-coating technique. In view of smart window applications, electrochromic windows were then designed and fabricated using a thin tungsten oxide film. For this purpose, Glass/ FTO/ WO3/ electrolyte/ FTO/Glass could be of use due to its special structure that consists of an electrochromic layer (WO3) on a transparent conductor (FTO), an electrolyte containing Li+ cations, and a transparent conductor layer. A voltage was applied on the fabricated sample, which was later assesed for its transmission, switching speed, and coloration efficiency. An increase in the coloration efficiency from 87 cm2/C-1 to 99.1 cm2/C-1 was found associated with an increase in the deposition speed. Moreover, the increase in the deposition speed led to a decrease in the coloration and bleaching time duration from 11.4 s to 6.2 s and from 12.8 s to 5.2 s respectively. The results obtained on the thin film WO3 can be useful for electrochromic applications.
Full-Text [PDF 586 kb]   (179 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/03/6 | Revised: 2018/05/29 | Accepted: 2018/09/4 | Published: 2019/12/27

1. H. Naja and A. Bahari, "Optical structural and electrochromic behavior studies on nanocomposite thin film of aniline toluidine and WO3," Opt. Mater, Vol. 58, pp.210-218, 2016. [DOI:10.1016/j.optmat.2016.05.035]
2. G.H. Shim and S.H. Foulger, "Coupling of crystalline colloidal arrays with intrinsically conductive polymers: Reflection-type electrochromic devices, Photonics Nanostruct" Fundam. Appl. Vol. 10, pp. 440-446, 2012. [DOI:10.1016/j.photonics.2011.12.001]
3. C.G. Granqvist, "Electrochromic for smart windows: Oxide-based thin films and devices," Thin Soild Films, Vol. 564, pp. 1-38, 2014. [DOI:10.1016/j.tsf.2014.02.002]
4. M. Kamalisarvestani, F.S. Javadi, S. Mekhilef, and R.Saidur , "Performance, materials and coating technologies of thermochromic thin films on smart windows," Renewable and Sustainable Energy Reviews, Vol. 26, pp. 353-364, 2013. [DOI:10.1016/j.rser.2013.05.038]
5. L. Mohan, C. Anandan, and N. Rajendran, "Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks solution for biomedical applications," Electrochim. Acta, Vol. 155, pp. 411-420, 2015. [DOI:10.1016/j.electacta.2014.12.032]
6. K.C. Cheng, F.R. Chen, and J.J. Kai, "Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4V in Hanks solution for biomedical applications," Sol. Energy Mater. Sol. Cells, Vol. 90, pp.1156-1165, 2006.
7. D.J. Rogers, V.E. Sandana, S. Gautier, T. Moudakir, and M. Razeghi, "Core-shell GaN-ZnO moth-eye nanostructure arrays grown on a-SiO2/Si (111) as a basis for improved InGaN-based photovoltaics and LEDs," Photonics Nanostruct. Fundam. Appl. Vol. 15, pp. 53-58, 2006. [DOI:10.1016/j.photonics.2015.03.003]
8. V.V. Kondalkar, R.R. Kharade, S.S. Mali, R.M. Mane, P.B. Patil, P.S. Patil, S. Choudhury, and P.N. Bhosale, "Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application," Superlattices Microstruct. Vol. 73, pp. 290-295, 2014. [DOI:10.1016/j.spmi.2014.05.039]
9. S.S. Kalagi, S.S. Mali, D.S. Dalavi, A.I. Inamdar, H. Im, and P.S. Patil, "Transmission attenuation and chromic contrast characterization of R.F. sputtered WO3 thin films for electrochromic device applications," Electrochim. Acta, Vol. 85, pp. 501-508, 2012. [DOI:10.1016/j.electacta.2012.08.093]
10. S.A. Agnihotry, M. Kar, and T.K. Saxena, "Towards electrochromic stability in sol - gel-derived tungsten oxide films : cyclic voltammetric and spectrophotometric investigations," Sol. Cells, Vol. 90, pp. 15-24, 2006. [DOI:10.1016/j.solmat.2005.01.006]
11. M.M. Nahass, M.M. Saadeldin, H.A Ali, and M. Zaghllol, "Electrochromic properties of amorphous and crystalline WO3 thin films prepared by thermal evaporation technique," Mater. Sci. Semicond. Process. Vol. 29, pp. 201-205, 2015. [DOI:10.1016/j.mssp.2014.02.051]
12. A. Mohtar, W. Kassem, M. Tabbal, and M. Roumie, "Formation of WO3 by remote plasma assisted oxidation of tungsten thin films," Surf. Coatings Technol. Vol. 307, pp. 583-589, 2016. [DOI:10.1016/j.surfcoat.2016.09.046]
13. P. Madhukar, D.S. Jyothi, N. Jayababu, and M.V. Reddy, "Influence of annealing temperature on structural and dielectric properties of e-beam evaporated WO3 thin films," Mater. Today Proc. Vol. 3, pp.4199-4204, 2016. [DOI:10.1016/j.matpr.2016.11.096]
14. S. Adhikari and D. Sarkar, "Electrochimica Acta High Efficient Electrochromic WO3 Nanofibers," Electrochim. Acta, Vol. 138, pp. 115-123, 2014. [DOI:10.1016/j.electacta.2014.06.062]
15. V.R. Buch, A. Kumar, and S.K. Rawal, "Review on electrochromic property for WO3 thin films usingdifferent deposition techniques," Mater. Today Proc. Vol. 3, pp. 1429-1437, 2016. [DOI:10.1016/j.matpr.2016.04.025]
16. S. Hassab and J. Padilla, "Electrochemistry Communications Using WO3 as a transparent, optically passive counter electrode in an unbalanced electrochromic configuration," Electrochem. Commun. Vol. 72, pp. 87-90, 2016. [DOI:10.1016/j.elecom.2016.09.001]
17. K. Paipitak, C. Kahattha, W.T echitdheera, and S. Porntheeraphat, "Influence of Ti and Zn Dopants on Structural Properties and Electrochromic Performance of Sol-Gel Derived WO3 Thin Films," Energy Procedia, Vol. 9, pp. 446-451, 2011. [DOI:10.1016/j.egypro.2011.09.050]
18. H.P. Quiroz, C.P. Barrera, R.R. González, and A. Dussan, "Evidence of iridescence in TiO2 nanostructures: An approximation in plane wave expansion method," Photonics Nanostruct. Fundam. Appl. Vol. 22, pp. 46-50, 2016. [DOI:10.1016/j.photonics.2016.10.003]
19. Z. Bi, S. Zhang, X. Li, and X. Gao, "A novel nanocomposite of WO3 modified Al-doped ZnO nanowires with enhanced electrochromic performance," Mater. Lett. Vol.160, pp. 186-189, 2015. [DOI:10.1016/j.matlet.2015.07.107]
20. R.R. Kharade, S.S. Mali, S.P. Patil, K.R. Patil, M.G. Gang, P.S. Patil, J.H. Kim, and P.N. Bhosale, "Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films," Electrochim. Acta, Vol.102, pp. 358-368, 2013. [DOI:10.1016/j.electacta.2013.03.123]
21. L.M. Bertus, C.Faure, A. Danine, C. Labrugere, G. Campet, A. Rougier, and A. Duta, "Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electrochromic applications," Mater. Chem. Phys. Vol. 140, pp. 49-59, 2013. [DOI:10.1016/j.matchemphys.2013.02.047]
22. S. Poongodi, P. Suresh, D. Mangalaraj, N. Ponpandian, P. Meena, Y. Masuda, and C. Lee, "Electrodeposition of WO3 nanostructured thin fi lms for electrochromic and H2S gas sensor applications," J. Alloys Compd. Vol.719, pp. 71-81, 2017. [DOI:10.1016/j.jallcom.2017.05.122]
23. M.F. Kuhaili, S.M. Durrani, E.E. Khawaja, and J. Shirokoff, "Effects of preparation conditions on the optical properties of thin films of tellurium oxide," J. Phys. D, Vol. 35, pp. 910-915, 2002. [DOI:10.1088/0022-3727/35/9/312]
24. A. Sezgin, R. Budako, S. Türküz, and H. Parlar, "Electrochromic properties of tungsten trioxide (WO3) layers grown on ITO / glass substrates by magnetron sputtering," J. Vac. Sci. Technol. A, Vol.120, pp. 28-31, 2015. [DOI:10.1016/j.vacuum.2015.02.036]
25. K. Paipitak, W. Techitdheera, and S. Porntheeraphat, "Characterization of Sol-gel Derived Ti-doped Tungsten Oxide Electrochromic Thin Films," Energy Procedia, Vol. 34, pp. 689-696, 2013. [DOI:10.1016/j.egypro.2013.06.801]
26. V. Madhavi, P. Kondaiah, O.M. Hussain, and S. Uthanna, "Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films," Phys. B Condens. Matter. Vol. 454, pp. 141-147, 2014. [DOI:10.1016/j.physb.2014.07.029]
27. D.R. Acosta, C. Magaña, F. Hernández, and J. Ortega, "Electrical, optical and electrochromic properties of Ti:WO3 thin films deposited by the pulsed chemical spray technique," Thin Solid Films, Vol. 594, pp. 207-214, 2015. [DOI:10.1016/j.tsf.2015.06.006]
28. K. Sauvet, L. Sauques, A. Rougier, "IR electrochromic WO3 thin films: From optimization to devices," Sol. Energy Mater. Sol. Cells, Vol. 93, pp. 2045-2049, 2009. [DOI:10.1016/j.solmat.2009.05.003]
29. J. De, R.M. Neto, R.M. Torresi, S.I. Cordoba, and D. Torresi, "Electrochromic behavior of WO3 nanoplate thin films in acid aqueous solution and a protic ionic liquid," J. Electroanal. Chem. Vol. 765, pp. 111-117, 2016. [DOI:10.1016/j.jelechem.2015.08.032]
30. R. Sydam, M. Deepa, S.M. Shivaprasad, and A.K. Srivastava, "A WO3-poly(butyl viologen) layer-by-layer film/ruthenium purple film based electrochromic device switching by volt application," Sol. Energy Mater. Sol. Cells, Vol. 132, pp. 148-161, 2015. [DOI:10.1016/j.solmat.2014.08.034]
31. N. Mendoza, F. Paraguay, L. Hechavarría, M.E. Nicho, and H. Hu, "Nanostructured polyethylene glycol-titanium oxide composites as solvent-free viscous electrolytes for electrochromic devices," Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2478-2484, 2011. [DOI:10.1016/j.solmat.2011.04.035]
32. C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, and Y. Sampeur, "Preparation, characterization and properties of sputtered electrochromic and thermochromic devices," Surf. Coatings Technol. Vol. 98, pp. 1477-1482, 1998. [DOI:10.1016/S0257-8972(97)00154-0]
33. E. Ienei, A.C. Milea, and A. Duta, "Influence of spray pyrolysis deposition parameters on the optical properties of porous alumina films," Energy Procedia, Vol. 48, pp. 97-104, 2014. [DOI:10.1016/j.egypro.2014.02.012]
34. Y.S. Krasnov, S.V. Volkov, and G.Y. Kolbasov, "Optical and kinetic properties of cathodically deposited amorphous tungsten oxide films," J. Non. Cryst. Solids. Vol. 352, pp. 3995-4002, (2006). [DOI:10.1016/j.jnoncrysol.2006.08.007]
35. A. Karuppasamy and A. Subrahmanyam, "Studies on electrochromic smart windows based on titanium doped WO3 thin films," Thin Solid Films, Vol. 516, pp.175-178, 2007. [DOI:10.1016/j.tsf.2007.07.163]
36. B. Baloukas, J.M. Lamarre, and L. Martinu, "Electrochromic interference filters fabricated from dense and porous tungsten oxide films," Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 807-815, 2011. [DOI:10.1016/j.solmat.2010.10.026]
37. H. Sadiki, J.F. Pierson, C. Rousselot, N. Martin, and G. Terwagne, "Properties and electrochromic performances of reactively sputtered tungsten oxide films with water as reactive gas," Surf. Coatings Technol. Vol. 200, pp. 232-235, 2005. [DOI:10.1016/j.surfcoat.2005.02.195]
38. N. Naseri, R. Azimirad, O. Akhavan, and A.Z. Moshfegh, "Improved electrochromical properties of sol-gel WO3 thin films by deposited gold nanocrystals," Thin Solid Films, Vol. 518, pp. 2250-2257, 2010. [DOI:10.1016/j.tsf.2009.08.001]
39. J.M. León, D.R. Acosta, U. Pal, and L. Castañeda, "Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping," Electrochim. Acta, Vol. 56, pp. 2599-2605, 2011. [DOI:10.1016/j.electacta.2010.11.038]
40. K.J. Patel, C.J. Panchal, M.S. Desai, and P.K. Mehta, "An investigation of the insertion of the cations H+, Na +, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures," Mater. Chem. Phys. Vol. 124, pp. 884-890, 2010. [DOI:10.1016/j.matchemphys.2010.08.021]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb