Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)                   IJOP 2019, 13(2): 103-110 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yousefi E, Hatami M, Torabi Jahromi A, Dehghani S. All-Optical Ternary Stability in Uniform Nonlinear Chalcogenide Fiber Bragg Gratings. IJOP. 2019; 13 (2) :103-110
URL: http://ijop.ir/article-1-332-en.html
1- Atomic and Molecular Group, Faculty of Physics, Yazd University
2- Physics Department, Shiraz University of Technology,
3- Electrical Engineering Department, Persian Gulf University of Bushehr
4- Faculty of Advanced Technologies, Shiraz University
Abstract:   (1436 Views)
In recent decades, fiber Bragg gratings (FBGs) have been very much considered for their many applications in optical communication systems, as well as due to their bistability and multi stability properties. In this paper, the formation of ternary stability (TS) in nonlinear chalcogenide fiber Bragg gratings (NCFBGs) is investigated via numerical simulations. Effective parameters on TS such as the FBG length, input wavelength and nonlinear property (or nonlinearity) on TS formation are introduced and studied. It is found that there exists a minimum length for each third order nonlinear coefficient that TS phenomena can be observed. Also, the threshold intensity for TS formation is calculated with respect to the length, input wavelength and third order nonlinearity. In addition, the relevance between the minimum length for TS formation and the third order nonlinearity in the range of chalcogenide nonlinearities are looked into. It is numerically confirmed that increasing the input wavelength (in a valid FBG input wavelength range) increases the TS formation threshold intensity, while decreases the needed FBG length. Because of using experimental values in this paper, it has valuable information about designing the all-optical device with three - level stability which makes NCFBG a suitable option for all-optical ternary switching and all-optical memory in the integrated optical circuits.
Full-Text [PDF 576 kb]   (365 Downloads)    
Type of Study: Research | Subject: General
Received: 2018/01/2 | Revised: 2018/02/12 | Accepted: 2018/05/8 | Published: 2019/12/27

1. A. B. Dar and R. K. Jha, "Chromatic dispersing compensation techniques and characterization of fiber Bragg grating for dispersion compensation," Opt. Quant. Electron., vol. 49, p. 108, 2017. [DOI:10.1007/s11082-017-0944-4]
2. M. M. Ali, K. S. Lim, A. Becir, M. H. Lai, and H. Ahmad, "Optical Gaussian Notch Filter Based on Periodic Microbent Fiber Bragg Grating," IEEE Photonics Journal, vol. 6, pp. 1-8, 2014. [DOI:10.1109/JPHOT.2013.2295466]
3. X. Han and J. Yao, "Bandstop-to-Bandpass Microwave Photonic Filter Using a Phase-Shifted Fiber Bragg Grating," Journal of Lightwave Technology, vol. 33, pp. 5133-5139, 2015. [DOI:10.1109/JLT.2015.2492818]
4. G. Alvarez-Botero, F. E. Baron, C. C. Cano, O. Sosa, and M. Varon, "Optical sensing using fiber Bragg gratings: fundamentals and applications," IEEE Instrument & Measurement Magazine, vol. 20, pp. 33-38, 2017. [DOI:10.1109/MIM.2017.7919131]
5. E. Yousefi, M. Hatami, and S. Dehghani, "Optimization of Bistability in nonlinear chalcogenide fiber Bragg grating for all optical switch and memory applications," IJOP, vol. 11, pp. 49-55, 2017. [DOI:10.18869/acadpub.ijop.11.1.49]
6. H. G. Winful, J. H. Marburger, and E. Garmire, "Theory of Bistability in Nonlinear Distributed feedback structures," Appl. Phys. Lett. vol. 35, pp. 379-381, 1979. [DOI:10.1063/1.91131]
7. N. G. R. Broderick, "Bistable switching and multiple gap-soliton formation in a fiber Bragg grating," Opt. Commun. vol. 148, pp. 90-94, 1998. [DOI:10.1016/S0030-4018(97)00672-X]
8. G. P. Agrawal, Applications of Nonlinear Fiber Optics, Academic Press, 2001.
9. Y. L. Kim, J. H. Kim, S. Lee, D. H. Woo, S. H. Kim, and T. H. Yoon, "Broad-band all optical flip-flop based on optical bistability in an integrated SOA/DFB-SOA," IEEE Photonics Technol. Lett. vol. 16, pp. 398-400 , 2004. [DOI:10.1109/LPT.2003.823133]
10. E. Yousefi and M. Hatami, "All optical self signal processing using chalcogenide nonlinear fiber Bragg grating,". Optik, vol. 125, pp. 6637-6640, 2014. [DOI:10.1016/j.ijleo.2014.08.121]
11. J. M. Harbold, F. O. Ilday, and F. W. Wise, "Highly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. vol. 27, pp. 119-121, 2002. [DOI:10.1364/OL.27.000119]
12. M. R. Lamont, B. Luther-Davies, D.Y. Choi, S. Madden, and B. J. Eggleton, "Supercontnuum generation in dispersion engineered highly nonlinear ( ) As2S3 chalcogenide planar waveguide," Opt. Express, vol.16, pp. 14938-14944, 2008. [DOI:10.1364/OE.16.014938]
13. L. Scholtz and J. Müllerová, "Numerical studies on wavelength-selective all-optical switching using optical bistability in nonlinear chalcogenide FBGs," ICTON, Budapest, vol. 39, pp. 1-4, 2015. [DOI:10.1109/ICTON.2015.7193575]
14. Z. Tahmasebi and M. Hatami, "Study of the gain saturation effect on the propagation of dark soliton in ER+3-doped Ga5Ge20Sb10S65 chalcogenide fiber amplifier," Opt. Commun. vol. 284, pp. 656-659, 2011. [DOI:10.1016/j.optcom.2010.09.044]
15. Y. Yosia and S. Ping, "Optical bistability in periodic media with third fifth- and seventh- order nonlinearities," J. Lightwave technol. vol. 25, pp. 875-882, 2007. [DOI:10.1109/JLT.2006.890455]
16. Y. Yosia and S. Ping, "Double Optical Bistability and its Application in Nonlinear Chalcogenide-Fiber Bragg Gratings," Phys. B, vol. 394, pp. 293-296, 2007. [DOI:10.1016/j.physb.2006.12.028]
17. E. Yousefi, M. Hatami, and A. Torabi Jahromi, "All-optical ternary signal processing using uniform nonlinear chalcogenide fiber Bragg gratings," J. Opt. Soc. Am. B, vol. 32, pp. 1472-1478, 2015. [DOI:10.1364/JOSAB.32.001471]
18. A. G. F. Filho, J. R. R. Sousa, A. F. Morais Neto, J. W. M. Menezes, and A. S. B. Sombra, "Periodic modulation of nonlinearity in a fiber Bragg grating: a numerical investigation," J. Electromagn. Analysis. Appl. vol. 04, pp. 53-56, 2012. [DOI:10.4236/jemaa.2012.42007]
19. G. P. Agrawal, Nonlinear Fiber Optics, Academic, 2013. [DOI:10.1016/B978-0-12-397023-7.00011-5]

Add your comments about this article : Your username or Email:

© 2020 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb