Volume 13, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 13, No 1, Winter-Spring 2019)                   IJOP 2019, 13(1): 53-60 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani M, Keshavarz A, Honarasa G, Ghayoor R. Sensitivity Enhancement of Ring Laser Gyroscope Using Dielectric-Graphene Photonic Crystal. IJOP. 2019; 13 (1) :53-60
URL: http://ijop.ir/article-1-329-en.html
Shiraz University of Technology
Abstract:   (500 Views)
In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring laser gyroscope on the interference pattern and the sensitivity of the device are studied and simulated using ABCD propagation matrix method. Results show that dielectric-graphene photonic crystal has a high transmission and therefore high efficiency in the wavelength of ring laser gyroscope. So it is a suitable choice to use in the ring laser gyroscope. Also, a comparison between ring laser gyroscope with and without dielectric-graphene photonic crystal shows that when the dielectric-graphene photonic crystal is in the system it is possible to build gyroscope with smaller lengths and high sensitivity.
Full-Text [PDF 403 kb]   (135 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2017/12/9 | Revised: 2018/01/11 | Accepted: 2018/02/12 | Published: 2019/10/27

References
1. V. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella, "Gyroscope Technology and Applications: A Review in the Industrial Perspective," Sensors, Vol. 17, pp. 2284 (1-22), 2017. [DOI:10.3390/s17102284]
2. P.R. Ayswarya, S.S. Pournami, and R. Nambiar, "A survey on ring laser gyroscope technology," Int. J. Comput. Appl., Vol. 116, pp. 25-27, 2015. [DOI:10.5120/20310-2354]
3. J.E. Schaar, H. Yum, and S.M. Shahriar, "Theoretical description and design of a fast-light enhanced helium-neon ring-laser gyroscope," in Proc. SPIE, Vol. 7949, pp. 794914 (1-9), 2011. [DOI:10.1117/12.880786]
4. X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, "Theoretical design of a superluminal helium-neon ring laser via coupled passive cavities," J. Opt. Vol. 16, pp. 125401 (1-9), 2014. [DOI:10.1088/2040-8978/16/12/125401]
5. T. Qu, K. Yang, X. Han, S. Wu, Y. Huang, and H. Luo, "Design of a superluminal ring laser gyroscope using multilayer optical coatings with huge group delay," Sci. Rep. Vol. 4, pp. 7098 (1-5), 2014. [DOI:10.1038/srep07098]
6. M. Salit, K. Salit, and P. E. Bauhahn, "Increasing the scale factor of a ring laser gyro via spectral hole burning," in Proc. SPIE, Vol. 8273, pp. 82730H (1-9), 2012. [DOI:10.1117/12.916174]
7. M.S. Shahriar, G.S. Pati, R. Tripathi, V. Gopal, M. Messall, and K. Salit, "Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light," Phys. Rev. A, Vol. 75, pp. 53807 (1-10), 2007. [DOI:10.1103/PhysRevA.75.053807]
8. M. A. Terrel, M. J. F. Digonnet, and S. Fan, "Coupled resonator gyroscopes: what works and what does not," in Advances in Slow and Fast Light III, Vol. 7612, pp. 76120B (1-9), 2010. [DOI:10.1117/12.848637]
9. C. Fenzl, T. Hirsch, and O.S. Wolfbeis, "Photonic crystals for chemical sensing and biosensing," Angew. Chemie Int. Ed. Vol. 53, pp. 3318-3335, 2014. [DOI:10.1002/anie.201307828]
10. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic crystals: molding the flow of light, in optics & light, 2nd Ed. I. Gnerlich, Ed. New Jersey: Princeton university press, 2011. [DOI:10.2307/j.ctvcm4gz9]
11. [11] K. Inoue and K. Ohtaka, Photonic crystals: physics, fabrication and applications, Springer, 2013.
12. Z. Cai, N.L. Smith, J.-T. Zhang, and S.A. Asher, "Two-dimensional photonic crystal chemical and biomolecular sensors," Anal. Chem. Vol. 87, pp. 5013-5025, 2015. [DOI:10.1021/ac504679n]
13. K. Ahmed and M. Morshed, "Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications," Sens. Bio-Sensing Res. Vol. 7, pp. 1-6, 2016. [DOI:10.1016/j.sbsr.2015.10.005]
14. H. Wang and K.-Q. Zhang, "Photonic crystal structures with tunable structure color as colorimetric sensors," Sensors, Vol. 13, pp. 4192-4213, 2013. [DOI:10.3390/s130404192]
15. Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L.K. Oxenløwe, K. Yvind, and J. Mørk, "Fano resonance control in a photonic crystal structure and its application to ultrafast switching," Appl. Phys. Lett. Vol. 105, pp. 61117 (1-15), 2014. [DOI:10.1063/1.4893451]
16. M. I. Hasan, M. S. Habib, M. S. Habib, and S. M. A. Razzak, "Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber," Opt. Fiber Technol. Vol. 20, pp. 32-38, 2014. [DOI:10.1016/j.yofte.2013.11.005]
17. A. Goban, C.-L. Hung, S.-P. Yu, J.D. Hood, J.A. Muniz, J.H. Lee, M.J. Martin, A.C. McClung, K.S. Choi, and D.E. Chang, "Atom-light interactions in photonic crystals," Nat. Commun. Vol. 5, pp. 1-9, 2014. [DOI:10.1038/ncomms4808]
18. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, "Controlling light with metamaterial-based nonlinear photonic crystals," Nat. Photonics, Vol. 9, pp. 180-184, 2015. [DOI:10.1038/nphoton.2015.17]
19. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics, Vol. 4, pp. 611-622, 2010. [DOI:10.1038/nphoton.2010.186]
20. M. Pizzocaro, "Development of a ring laser gyro: active stabilization and sensitivity analysis," PhD thesis, Dept. physics. Eng., Pisa Univ., Pisa, Italy, 2009.
21. B. Wang, X. Zhang, K.P. Loh, J. and Teng, "Tunable broadband transmission and phase modulation of light through graphene multilayers", Appl. Phys. Vol. 115, pp. 213102 (1-8), 2014. [DOI:10.1063/1.4880336]
22. S. L. Chuang, Physics of photonic devices, in Lasers & Photonics, 2nd Ed. G. Boreman, Ed. New Jersey, Wiley & Sons, 2012.
23. J.T. Verdeyen, Laser electronics, in lasers, 3rd Ed. I. Zucker, Ed. New Jersey: Prentice Hall,1989.
24. H. Wen, G. Skolianos, S. Fan, M. Bernier, R. Vallée, and M.J.F. Digonnet, "Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√ Hz resolution," J. Light. Technol. Vol. 31, pp. 1804-1808, 2013. [DOI:10.1109/JLT.2013.2258658]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb