Fri, Oct 30, 2020
**[Archive]**

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Rahimian A, Zahed H. Effects of intense laser pulse properties on wake field acceleration in magnetized plasma: Half-Sine Shape (HSS) and Gaussian Shape (GS) pulses. IJOP. 2019; 13 (2) :111-118

URL: http://ijop.ir/article-1-327-en.html

URL: http://ijop.ir/article-1-327-en.html

In this paper, we have simulated the excitation of wake fields in the interaction of an intensive laser pulses having Half-Sine and Gaussian time envelopes with a fully ionized cold plasma using particle in cell (PIC) method. We investigated the dependency of wake filed amplitude to different laser and plasma parameters such as laser wavelength, pulse duration and electron number density. In addition, the effect of employing a longitudinal magnetic field on the intensity of wake field is studied. It has been seen that the wake field intensity is enhanced in the presence of a magnetic field for both Half-Sine and Gaussian shape pulses. Our aim has been finding optimum values of different parameters for which higher accelerating wake electric fields can be obtained.

Type of Study: Research |
Subject:
Special

Received: 2017/11/13 | Revised: 2018/03/28 | Accepted: 2018/04/30 | Published: 2019/12/27

Received: 2017/11/13 | Revised: 2018/03/28 | Accepted: 2018/04/30 | Published: 2019/12/27

1. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, and V. Malka, "Injection and Acceleration of Quasimonoenergetic Relativistic Electron Beams Using Density Gradients at the Edges of a Plasma Channel," Physics of Plasmas, Vol. 17, pp. 083107(1-8), 2010. [DOI:10.1063/1.3469581]

2. S. D. Patil, M. V. Takale, V. J. Fulari, and T. S. Gill, "Sensitiveness of Light Absorption for Self-Focusing at Laser-Plasma Interaction with Weakly Relativistic and Ponderomotive Regime," J. Comput. Phys. Vol. 34, pp. 669-674, 2016. [DOI:10.1017/S026303461600063X]

3. P. Yu, X. Xu, V. K. Decyk, W. An, J. Vieira, F. S. Tsung, R. A. Fonseca, W. Lu, L. O. Silva, and W. B. Mori, "Modeling of Laser Wakefield Acceleration in Lorentz Boosted Frame Using Em-Pic Code with Spectral Solver," J. Comput. Phys. Vol. 266, pp. 124-138, 2014. [DOI:10.1016/j.jcp.2014.02.016]

4. T. Tajima and J. M. Dawson, "Laser Electron Accelerator," Phys. Rev. Lett. Vol. 43, pp. 267-270, 1979. [DOI:10.1103/PhysRevLett.43.267]

5. M. Litos, E. Adli, W. An, C. I. Clarke, C. E. Clayton, S. Corde, J. P. Delahaye, R. J. England, A. S. Fisher, J. Frederico, S. Gessner, S. Z. Green, M. J. Hogan, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, N. Vafaei-Najafabadi, D. Walz, G. White, Z. Wu, V. Yakimenko, and G. Yocky, "High-Efficiency Acceleration of an Electron Beam in a Plasma Wakefield Accelerator," Nature, Vol. 515, pp. 92-99, 2014. [DOI:10.1038/nature13882]

6. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, and J. Faure, "Relativistic Electron Beams Driven by Khz Single-Cycle Light Pulses," Nat. Photonics, Vol. 11, pp. 293-296, 2017. [DOI:10.1038/nphoton.2017.46]

7. C. B. Schroeder, C. Benedetti, E. Esarey, M. Chen, and W. P. Leemans, "Two-Color Ionization Injection Using a Plasma Beatwave Accelerator," Nucl. Instrum. Methods Phys. Res. Vol. 909, pp. 149-152, 2018. [DOI:10.1016/j.nima.2018.01.008]

8. Arvinder Singh and Naveen Gupta, "Beat Wave Excitation of Electron Plasma Wave by Relativistic Cross Focusing of Cosh-Gaussian Laser Beams in Plasma," Phys. Plasmas, Vol. 22, pp. 062115, 2015. [DOI:10.1063/1.4922903]

9. J. Cowley, C. Thornton, C. Arran, R. J Shalloo, L. Corner, G. Cheung, C. D Gregory, S. P D Mangles, N. H Matlis, D. R Symes, R. Walczak, and S. M Hooker, "Excitation and Control of Plasma Wakefields by Multiple Laser Pulses," Phys. Rev. Lett. Vol. 119, pp. 044802 (1-6), 2017. [DOI:10.1103/PhysRevLett.119.044802]

10. S. Kumar, P. K. Gupta, R. K. Singh, S. Sharma, R. Uma, and R. P. Sharma, "Pulse-Compression and Self-Focusing of Gaussian Laser Pulses in Plasma Having Relativistic-Ponderomotive Nonlinearity," Laser and Particle Beams, Vol. 35, pp. 429-436, 2017. [DOI:10.1017/S0263034617000416]

11. K. Mima, J. Fuchs, T. Taguchi, J. Alvarez, J. R. Marquès, S. N. Chen, T. Tajima, and J. M. Perlado, "Self-Modulation and Anomalous Collective Scattering of Laser Produced Intense Ion Beam in Plasmas," Matter and Radiation at Extremes, Vol. 3, pp. 127-134, 2018. [DOI:10.1016/j.mre.2017.12.004]

12. C. Benedetti, C. B. Schroeder, E. Esarey, and W. P. Leemans, "Plasma Wakefield Excitation by Incoherent Laser Pulses: A Path Towards High-Average Power Laser-Plasma Accelerators," AIP Conf. Proc. Vol. 1777, pp. 040001 (1-6), 2016. [DOI:10.1063/1.4965603]

13. B. Gaur, P. Rawat, and G. Purohit, "Particle Acceleration by Beating of Two Intense Cross-Focused Cosh-Gaussian Laser Beams in Plasma," Laser and Particle Beams, Vol. 36, pp. 60-68, 2018. [DOI:10.1017/S0263034617000817]

14. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka, "Controlled Injection and Acceleration of Electrons in Plasma Wakefields by Colliding Laser Pulses," Nature, Vol. 444, pp. 737-739, 2006. [DOI:10.1038/nature05393]

15. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs Toth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, "Gev Electron Beams from a Centimetre-Scale Accelerator," Nat Phys, Vol. 2, pp. 696-699, 2006. [DOI:10.1038/nphys418]

16. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, "Monoenergetic Beams of Relativistic Electrons from Intense Laser-Plasma Interactions," Nature, Vol. 431, pp. 535-538, 2004. [DOI:10.1038/nature02939]

17. E. A. Nanni, W. R. Huang, K-H Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, "Terahertz-Driven Linear Electron Acceleration," Nat. Commun. Vol. 6, pp. 8486 (1-8), 2015. [DOI:10.1038/ncomms9486]

18. K. K. Anoop, N. Xiaochang, W. Xuan, A. Salvatore, and B. Riccardo, "Fast Ion Generation in Femtosecond Laser Ablation of a Metallic Target at Moderate Laser Intensity," Laser Physics, Vol. 24, pp. 105902 (1-6), 2014. [DOI:10.1088/1054-660X/24/10/105902]

19. Sh. Moniruzzaman, D. Lad Amit, J. Kamalesh, S. Deep, D. Indranuj, and G. R. Kumar, "Megagauss Magnetic Fields in Ultra-Intense Laser Generated Dense Plasmas," Plasma Phys. Control. Fusion, Vol. 59, pp. 014007 (1-6), 2017. [DOI:10.1088/0741-3335/59/1/014007]

20. M. Borghesi, A. J. MacKinnon, A. R. Bell, R. Gaillard, and O. Willi, "Megagauss Magnetic Field Generation and Plasma Jet Formation on Solid Targets Irradiated by an Ultraintense Picosecond Laser Pulse," Phys. Rev. Lett. Vol. 81, pp. 112-115, 1998. [DOI:10.1103/PhysRevLett.81.112]

21. R. N. Sudan, "Mechanism for the Generation of 109 G Magnetic Fields in the Interaction of Ultraintense Short Laser Pulse with an Overdense Plasma Target," Phys. Rev. Lett. Vol. 70, pp. 3075-3078, 1993. [DOI:10.1103/PhysRevLett.70.3075]

22. A. Lagutin, K. Rosseel, F. Herlach, J. Vanacken, and Y. Bruynseraede, "Development of Reliable 70 T Pulsed Magnets," Meas. Sci. Technol. Vol. 14, pp. 2144-2150, 2003. [DOI:10.1088/0957-0233/14/12/015]

23. P. K. Shukla, G. Brodin, M. Marklund, and L. Stenflo, "Wake Field Generation and Nonlinear Evolution in a Magnetized Electron-Positron-Ion Plasma," Phys. Plasmas, Vol. 15, pp. 082305 (1-9), 2008. [DOI:10.1063/1.2970098]

24. V. B. Krasovitskii, V. G. Dorofeenko, V. I. Sotnikov, and B. S. Bauer, "Interaction of Powerful Laser Pulse with Magnetized Plasma," Phys. Plasmas, Vol. 11, pp. 724-742, 2004. [DOI:10.1063/1.1633556]

25. C.K. Birdsall and A.B. Langdon, Plasma Physics Via Computer Simulation. McGraw-Hill, 1985,

26. H. Chun Wu, Jpic & How to Make a Pic Code, Cornell University Library, arXiv.org, 2011,

27. E, Esarey and C, B. Schroeder, "Physics of Laser-Driven Plasma-Based Acceleration," Vol. , pp. 53510 (1-40), 2003, [DOI:10.2172/843065]

28. C. Huang, V. K. Decyk, C. Ren, M. Zhou, W. Lu, W. B. Mori, J. H. Cooley, Jr. T. M. Antonsen, and T. Katsouleas, "Quickpic: A Highly Efficient Particle-in-Cell Code for Modeling Wakefield Acceleration in Plasmas," J. Comput. Phys., Vol. 217, pp. 658-679, 2006. [DOI:10.1016/j.jcp.2006.01.039]

29. K. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media," IEEE Trans. Antennas Propag. Vol. 14, pp. 302-307, 1966. [DOI:10.1109/TAP.1966.1138693]

30. J. P. Boris, "Relativistic Plasma Simulation-Optimization of a Hybrid Code," Proceeding of Fourth Conference on Numerical Simulations of Plasmas, 1970.

31. H. R. Askari and A. Shahidani, "Influence of Properties of the Gaussian Laser Pulse and Magnetic Field on the Electron Acceleration in Laser-Plasma Interactions," Optics & Laser Technology, Vol. 45, pp. 613-619, 2013. [DOI:10.1016/j.optlastec.2012.05.023]