Volume 13, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 13, No 1, Winter-Spring 2019)                   IJOP 2019, 13(1): 23-34 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Danesh Kaftroudi Z, Mzandarani A. Self-Consistent Analysis of Barrier Characterization Effects on Quantum Well Laser Internal Performance. IJOP. 2019; 13 (1) :23-34
URL: http://ijop.ir/article-1-326-en.html
Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, Rudsar-Vajargah, Iran
Abstract:   (59 Views)

In this paper, a numerical study of barrier characterization effects on the high-temperature internal performance of an InGaAsP multi-quantum well laser is presented. The softwareused for this purpose self-consistently combines the three-dimensional simulation of carrier transports, self-heating, and optical waveguiding. The laser model calculates all relevant physical mechanisms, including their dependence on temperature and local carrier density. The results have shown that the proposed laser, which operates at 1325 nm, suffers from electron leakage. The electron leakage current decreases by reducing the barrier thickness. Although tensile strain barriers lead to improved laser optical behavior, it increases leakage current because of electron non-uniformity.

Full-Text [PDF 1000 kb]   (22 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/11/1 | Revised: 2018/02/26 | Accepted: 2018/04/30

References
1. C.H. Henry, The origin of quantum wells and quantum well lasers, In: Zory PS Ed Quantum Well Lasers, New York: Academic Press, 1993. [DOI:10.1016/B978-0-08-051558-8.50006-3]
2. S. Mogg, Long-Wavelength Vertical-Cavity Lasers: Materials and Device Analysis, Doctoral Dissertation, Royal Institute of Technology, Stockholm, pp. 16-18, 2003.
3. M. Nadeem Akram, Photonic Devices with MQW Active Material and Waveguide Gratings: Modeling and Characterization, Doctoral Dissertation, Royal Institute of Technology, Stockholm, pp. 25-30, 2005.
4. F. Hosseinpour and H. Hajihosseini, "Importance of Simulation in Manufacturing," International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Eng. Vol. 3, No. 3, pp. 229-232, 2009.
5. J. Piprek, Semiconductor optoelectronic devices, Elsevier Science, San Diego, 2003.
6. I. Vurgaftman and J.R. Meyer, "Band parameters for ΙΙΙ-V compound semiconductors and their alloy," J. Appl. Phys. Vol. 89, pp. 5815-5875, 2001. [DOI:10.1063/1.1368156]
7. Y.K. Kuo, S.H. Yen, M.W. Yao, M.L. Chen, and B.T. Liou, "Numerical study on gain and optical properties of AlGaInAs, InGaNAs, and InGaAsP material systems for 1.3μm semiconductor lasers," Opt. Commun. Vol. 275, No. 1, pp. 156-164, 2007. [DOI:10.1016/j.optcom.2007.02.025]
8. V. Bahrami Yekta and H. Kaatuzian, "Simulationand Temperature Characteristics Improvement of 1.3μm AlGaInAs Multiple Quantum Well Laser," Int. J. Opt. and Appl. Vol. 4, No. 2, pp. 46-53, 2014.
9. J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Appl. Phys. Lett. Vol.93, pp.121107 (1-3), 2008. [DOI:10.1063/1.2988324]
10. Z. Danesh Kaftroudi and E. Rajaei, "Thermal simulation of InP - based 1.3 µm vertical cavity surface emitting laser with AsSb-based DBRs," Opt. Commun. Vol. 284, pp. 330-340, 2011. [DOI:10.1016/j.optcom.2010.08.044]
11. J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, "Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells," Appl. Phys. Lett. Vol. 93, pp. 171113 (1-3), 2008. [DOI:10.1063/1.3012388]
12. G.B. Lin, D.Y. Kim, Q. Shan, J. Cho, E.F. Schubert, H. Shim, C. Sone, and J.K. Kim, "Effect of Quantum Barrier Thickness in the Multiple-Quantum-Well Active Region of GaInN/GaN Light-Emitting Diodes," IEEE Photon. J. Vol. 5, No. 4, pp. 1600207 (1-7), 2013. [DOI:10.1109/JPHOT.2013.2276758]
13. B.I. Miller, U. Koren, M.G. Young, and M. D. Chien, "Strain‐compensated strained‐layer superlattices for 1.5 μm wavelength lasers," Appl. Phys. Lett. Vol. 58, pp. 1952-1954, 1991. [DOI:10.1063/1.105029]
14. J.A. Subramaniam, "Critical thickness of equilibrium epitaxial thin films using finite element method," J. Appl. Phys. Vol. 95, No. 12, pp. 8472-8474, 2004. [DOI:10.1063/1.1745115]
15. T.E. Whall, A.D. Plews, N.L. Mattey and P.J. Phillips, "Effective mass and band non-parabolicity in remote doped Si/Si0.8Ge0.2 quantum wells," Appl. Phys. Lett. Vol. 66, No. 20, pp. 2724-2726, 1995. [DOI:10.1063/1.113501]
16. H. Hwan Park, W. Jeong, and B. Choe, "Strain ‐compensated InGaAs/InGaAsP quantum well lasers lattice matched to GaAs," Appl. Phys. Lett. Vol. 66, No. 2, pp. 201-203, 1995. [DOI:10.1063/1.114283]
17. N. Nuntawong, S. Birudavolu, C.P. Hains, S. Huang, H. Xu, and D.L. Huffaker, "Effect of strain-compensation in stacked 1.3µm InAs/GaAs quantum dot active regions grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. Vol. 85, No. 15, pp. 3050-3052, 2004. [DOI:10.1063/1.1805707]
18. B. Gonul, F. Kocak, H. Toktam and M. Oduncuoglu, "Theoretical Comparison of the Band Alignment of Conventionally Strained and Strain-Compensated Phosphorus- Aluminum- and Nitrogen-Based 1.3 μm QW Lasers," Chin. J. Phys. Vol. 42, No. 6, pp. 764-775, 2004.
19. Y.W. Mao, Y. Wang, Y.H. Chen, Z.Q. Xue, Q. Lin, Y.M. Duan, and H. Su, "Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers," Chin. Phys. Lett. Vol. 29, No. 6, pp. 064204 (1-4), 201 [DOI:10.1088/0256-307X/29/6/064204]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb