Fri, Apr 10, 2020
**[Archive]**

BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks

Yadollahi F, Safaiee R, Golshan M M. Characteristics of the Temporal Behavior of Entanglement between Photonic Binomial Distributions and a Two-Level Atom in a Damping Cavity. IJOP. 2019; 13 (1) :43-52

URL: http://ijop.ir/article-1-322-en.html

URL: http://ijop.ir/article-1-322-en.html

In the present study, temporal behavior of entanglement between photonic *binomial* distributions and a two-level atom in a leaky cavity, in equilibrium with the environment at a temperature T, is studied. In this regard, the master equation is solved in the secular approximation for the density matrix, when the initial photonic distribution is binomial, while the atomic states obey the Boltzmann distribution. The atom-photon density matrix so calculated is then used to compute the negativity, as a measure of entanglement. The behavior of atom-photon entanglement is, consequently, determined as a function of time *and* temperature. To justify the behavior of atom-photon entanglement, moreover, we employ the total density matrix to compute and analyze the time evolution of the initial photonic binomial probability distribution. Our results, along with representative figures reveal that the atom-photon degree of entanglement exhibits oscillations while decaying with time and asymptotically vanishes. It is further demonstrated that an increase in the temperature gives rise to a decrease in the entanglement. The finer characteristics of the temporal behavior of the corresponding probability distribution and, consequently, the atom-photon entanglement is also given and discussed.

Type of Study: Research |
Subject:
General

Received: 2017/10/7 | Revised: 2017/11/11 | Accepted: 2017/12/11 | Published: 2019/10/27

Received: 2017/10/7 | Revised: 2017/11/11 | Accepted: 2017/12/11 | Published: 2019/10/27

1. V. Vedral, "Quantum entanglement," Nature Physics, Vol. 10, pp. 256-258, 2014. [DOI:10.1038/nphys2904]

2. J. Bae, "Designing quantum information processing via structural physical approximation," Rep. Prog. Phys. Vol. 80, pp. 104001 (1-53), 2017. [DOI:10.1088/1361-6633/aa7d45]

3. K.R. Ferguson, S.E. Beavan, J.J. Longdell, and M.J. Sellars, "Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory," Phys. Rev. Lett. Vol. 117, pp. 020501 (1-5), 2016. [DOI:10.1103/PhysRevLett.117.020501]

4. T.E. Northup and R. Blatt, "Quantum information transfer using photons," Nature Photon. Vol. 8, pp. 356-363, 2014. [DOI:10.1038/nphoton.2014.53]

5. N. Horiuchi, "Quantum communications: long-distance teleportation," Nature Photon. Vol. 9, pp. 832-835, 2015. [DOI:10.1038/nphoton.2015.222]

6. Q-C. Sun, Y-L. Mao, S. - J. Chen, W. Zhang, Y-F. Jiang, Y-B. Zhang, W-J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T - Y. Chen, L- X. You, X- F. Chen, Z. Wang, J. - Y. Fan, Q. Zhang, and J-W. Pan, "Quantum teleportation with independent sources and prior entanglement distribution over a network," Nature Photon. Vol. 10, pp. 671-676, 2016. [DOI:10.1038/nphoton.2016.179]

7. L. Slodička, G. Hétet, N. Röck, P. Schindler, M. Hennrich, and R. Blatt, "Atom-atom entanglement by single-photon detection," Phys. Rev. Lett. Vol. 110, pp. 083603 (1-5), 2013. [DOI:10.1103/PhysRevLett.110.083603]

8. J.A. Mlynek, A.A. Abdumalikov, Jr. J.M. Fink, L. Steffen, M. Baur, C. Lang, A.F. van Loo, and A. Wallraff, "Demonstrating W-type entanglement of Dicke states in resonant cavity quantum electrodynamics," Phys. Rev. A, Vol. 86, pp. 053838 (1-5), 2012. [DOI:10.1103/PhysRevA.86.053838]

9. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, "A quantum gate between a flying optical photon and a single trapped atom," Nature, Vol. 508, pp. 237-240, 2014. [DOI:10.1038/nature13177]

10. M. Sahrai and V. Tahmoorian Askari Boroojerdi, "Dynamical behavior of atom-photon entanglement for a four-level atom near the band edge of a 3D-anisotropic photonic crystal," Quantum Inf Process, Vol. 16, pp. 145 (1-13), 2017. [DOI:10.1007/s11128-017-1590-2]

11. L. Li, Y.O. Dudin, and A. Kuzmich, "Entanglement between light and an optical atomic excitation," Nature, Vol. 498, pp. 466-469, 2013. [DOI:10.1038/nature12227]

12. D.N. Matsukevich and A. Kuzmich, "Quantum state transfer between matter and light ," Science, Vol. 306, pp. 663-666, 2004. [DOI:10.1126/science.1103346]

13. J. Volz, M. Weber, D. Schlenk, W. Rosenfeld, J. Vrana, K. Saucke, C. Kurtsiefer, and H. Weinfurter, "Observation of entanglement of a single photon with a trapped atom, " Phys. Rev. Lett. Vol. 96, pp. 030404 (1-4), 2006. [DOI:10.1103/PhysRevLett.96.030404]

14. A.B. Klimov and S.M. Chumakov, Quantum Optics, Wiley-Vch, 2009.

15. B.T. Torosov, S. Longhi, and G. Della Valle, "Mixed Rabi Jaynes-Cummings model of a three-level atom interacting with two quantized fields," Opt. Commun., Vol. 346, pp. 110-114, 2015. [DOI:10.1016/j.optcom.2015.02.035]

16. A-S. F. Obada, H.A. Hessian, and A-B. A. Mohamed, "Entropy and entanglement in the Jaynes-Cummings model with effects of cavity damping," J. Phys. B: At. Mol. Opt. Phys. Vol. 41, pp. 135503 (1-7), 2008. [DOI:10.1088/0953-4075/41/13/135503]

17. A-S. F. Obada, H. A. Hessian, and A-B. A. Mohamed, "Effects of cavity damping on the entanglement for a three-level atomic system," J. Mod. Opt. Vol. 56, pp. 881-885, 2009. [DOI:10.1080/09500340902783824]

18. A-S. F. Obada, H.A. Hessian, and A-B. A. Mohamed, "The effects of thermal photons on entanglement dynamics for a dispersive Jaynes-Cummings model," Phys. Lett. A, Vol. 372, pp. 3699-3706, 2008. [DOI:10.1016/j.physleta.2008.02.046]

19. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, "Quantum entanglement," Rev. Mod. Phys. Vol. 81, pp. 865-942, 2009. [DOI:10.1103/RevModPhys.81.865]

20. A-S. F. Obada, H.A. Hessian, and A-B. A. Mohamed, "Influence of the phase damping for two-qubits system in the dispersive reservoir," Quantum Inf. Process, Vol. 12, pp. 1947-1956, 2013. [DOI:10.1007/s11128-012-0503-7]

21. H. Hekmatara and M.K. Tavassoly, "Sub-Poissonian statistics, population inversion and entropy squeezing of two two-level atoms interacting with a single-mode binomial field: intensity dependent coupling regime," Opt. Commun. Vol. 319, pp. 121-127, 2014. [DOI:10.1016/j.optcom.2013.12.056]

22. M.O. Scully and M.S. Zubairy, Quantum Optics, Cambridge University Press, 2001.

23. N. Foroozani and M.M. Golshan, "Entanglement of Λ-atom and thermal photons in a double-band photonic crystal," J. Stat. Mech. Vol. 46, pp. 02007 (1-11), 2010. [DOI:10.1088/1742-5468/2010/02/P02007]

24. H.J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Springer, 2002.

25. M.R. Abbasi and M.M. Golshan, "Thermal entanglement of a two-level atom and bimodal photons in a Kerr nonlinear coupler," Phys. A, Vol. 392, pp. 6161-6167, 2013. [DOI:10.1016/j.physa.2013.07.068]

26. G. Vidal and R.F. Werner, "Computable measure of entanglement," Phys. Rev. A, Vol. 65, pp.032314 (1-12), 2002. [DOI:10.1103/PhysRevA.65.032314]

27. F. Amiri and M.M. Golshan, "Effect of external magnetic field on thermal entanglement of spin-subband states in a Rashba nanowire," J. Nanopart Res, Vol. 13, pp. 6069-6073, 2011. [DOI:10.1007/s11051-011-0220-7]

28. V. Ceban and M.A. Macovei, "Cavity quantum interferences with three-level atoms," J. Opt. Soc. Am. B, Vol. 33, pp. 942-946, 2016. [DOI:10.1364/JOSAB.33.000942]

29. R. Lo Franco, G. Compagno, A. Messina, and A. Napoli "Generation and revealing a quantum superposition of electromagnetic field binomial states in a cavity," Phys. Rev. A, Vol. 76, pp. 011804 (1-4), 2007. [DOI:10.1103/PhysRevA.76.011804]

30. F. Yadollahi, R. Safaiee, and M.M. Golshan, "Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity," Physica A, Vol. 492, pp. 472-484, 2018. [DOI:10.1016/j.physa.2017.09.047]

31. H.-P. Breuer and F. Petruccinne, Irreversible Quantum Dynamics, Springer-Verlag Berlin Heidel berg, 2003.

32. R. Safaiee, F. Aghel, and M.M. Golshan, "Thermal free entanglement of π-electronic spin and Landau-sublattice states in Rashba monolayer graphene," J. Stat. Mech. Vol. 2016, pp. 023101 (1-16), 2016. [DOI:10.1088/1742-5468/2016/02/023101]

33. F. Yadollahi and M.K. Tavassoly, "A theoretical scheme for generation of Gazeau-Klauder coherent states via intensity-dependent degenerate Raman interaction," Opt. Commun. Vol. 284, pp. 608-612, 2011. [DOI:10.1016/j.optcom.2010.09.062]