Volume 12, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 12, No 2, Summer-Fall 2018)                   IJOP 2018, 12(2): 91-98 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari E, Mansouri-Birjandi M A. Wideband Dispersion Compensation in Hexagonal Lattice Photonic Crystal Fiber. IJOP. 2018; 12 (2) :91-98
URL: http://ijop.ir/article-1-304-en.html
Faculty of Electrical and Computer Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Abstract:   (1118 Views)

In this paper, a new structure is provided for the dispersion compensating photonic crystal fibers in order to broaden the chromatic dispersion and increase the dispersion compensating capability in a wide wavelength range. In the structure, putting elliptical holes in the first ring of the inner core clad of a dispersion compensating fiber of the hexagonal lattice, increases the wavelength range of the dispersion compensation, and causes this fiber to have the capability of dispersion compensation in the whole E to U telecommunication bands. In this fiber, the minimal dispersion will be -1006 ps/(nm.km) at the 1.68 μm wavelength and at the 1.55 μm wavelength the dispersion coefficient will be -710 ps/(nm.km). The simulations are all done using the finite difference time domain numerical method.

Full-Text [PDF 866 kb]   (299 Downloads)    
Type of Study: Research | Subject: General
Received: 2017/03/16 | Revised: 2019/01/5 | Accepted: 2017/06/17 | Published: 2018/12/12

References
1. M. Sadeghi, S. Olyaee, and F. Taghipour, "Design of low-dispersion fractal photonic crystal fiber," IJOP, vol. 6, pp. 57-64, 2012.
2. F. Koohi-Kamali, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, "Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration," Int. J. Opt. Photon. (IJOP), vol. 6, pp. 83-96, 2012.
3. J. C. Knight, "Photonic crystal fibers," Nature, vol. 424, pp. 847- 851, 2003. [DOI:10.1038/nature01940]
4. J. C. knight, T. A. Birks, P. St. J. Russell, and D. M. Aktin, "All silica single-mode optical fiber with photonic crystal cladding," Opt. Lett., vol. 21, pp. 1547-1549, 1996. [DOI:10.1364/OL.21.001547]
5. S. Kim and C. S. Kee, "Dispersion properties of dual-core photonic quasicrystal Fiber," Opt. Express, vol. 17, pp. 15885-15890, 2009. [DOI:10.1364/OE.17.015885]
6. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett., vol. 8, pp. 1510–1512, 1996. [DOI:10.1109/68.541566]
7. J. L. Auguste, R. Jindal, J. M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thygarajan, "-1800 ps/(nm.km) chromatic dispersin of 1.55mm in dual concentric Core fibre," Electron. Lett. vol. 36, pp. 1689–1691, 2000. [DOI:10.1049/el:20001236]
8. M. Aliramezani and Sh. Mohammad Nejad, "Numerical analysis and optimization of a dual-concentric-core photonic crystal fiber for broadband dispersion compensation," Opt. Laser Technol. vol. 42, pp. 1209–1217, 2010. [DOI:10.1016/j.optlastec.2010.03.012]
9. B. L. Wang and J. M. Hsu, "Broadband dispersion compensating photonic crystal fiber with a high compensation ratio," Int. Conf. Advanced Materials for Science and Engineering (ICAMSE), pp. 471 – 474, 2016. [DOI:10.1109/ICAMSE.2016.7840176]
10. J. Yuan, X. Sang, C. Yu, C. Jin, X. Shen, G. Zhou, S. Li, and L. Hou, "Large negative dispersion in dual-concentric-core photonic crystal fiber with hybrid cladding structure based on complete leaky mode coupling," Opt. Commun., vol. 284, pp. 5847–5852, 2011. [DOI:10.1016/j.optcom.2011.08.075]
11. P. S. Maji and P. R. Chaudhuri, "Design of ultra large negative dispersion PCF with selectively tunable liquid infiltration for dispersion compensation," Opt. Commun., vol. 325, pp. 134–143, 2014. [DOI:10.1016/j.optcom.2014.03.048]
12. S. Yang, Y. Zhang, X. Peng, Y. Lu, and S. Xie, "Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field," Opt. Express, vol. 14, pp. 3015-3023, 2006. [DOI:10.1364/OE.14.003015]
13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express, vol. 14, pp. 893-900, 2006. [DOI:10.1364/OPEX.14.000893]
14. T. Matsui, K. Nakajima, and I. Sankawa, "Dispersion compensation over all the telecommunication bands with double-cladding photonic-crystal fiber," J. Lightw. Technol. vol. 25, pp. 757–762, 2007. [DOI:10.1109/JLT.2006.889668]
15. M. Selim Habib, M. Samiul Habib, M. I. Hasan, S. M. A. Razzak, R. R. Mahmud, and Y. Namihira, "Microstructure holey fibers as wideband dispersion compensating media for high speed transmission system," Optik, vol. 124, pp. 4984-4988, 2013. [DOI:10.1016/j.ijleo.2013.03.128]
16. R. S. Quimby, Photonics and Lasers an Introduction, Wiley-Interscience, 2006. [DOI:10.1002/0471791598]

Add your comments about this article : Your username or Email:
CAPTCHA

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb