Search published articles


Showing 2 results for Silver Nanoparticles

Bita Azemoodeh Afshar, Akbar Jafari, Rahim Naderali, Mir Maqsood Golzan,
Volume 16, Issue 2 (7-2022)
Abstract

In this study, we investigated the production of silver nanoparticles by pulsed Nd: YAG laser ablation with λ=532nm in distilled water. The sodium citrate used to control the size of nanoparticles (Nps). The sample containing Ag NPs was characterized by linear absorption spectroscopy (UV-Visible spectroscopy) and transmission electron microscopy (TEM observation). The behavior of nonlinear optical properties of silver nanoparticles was studied using the Z-Scan method at two optimum numbers of the laser pulses and four optimum laser energy densities. In the Z-Scan method, the nonlinear thermal properties of Ag NPs were investigated under exposure to nanosecond laser pulse at λ=532nm. They were gained by fitting theoretical and experimental data. The values of the nonlinear refractive index (n2) and the nonlinear absorption coefficient (β ) were compared concerning to two optimum numbers and four optimum energy densities. The results of the nonlinear refractive index showed a negative value for each sample, this means that samples act as a divergent lens, and the thermal self-defocusing effect can be the main factor of nonlinear behavior. Following the comparison of two quantities, n2 and β , we found that the nonlinear refractive index increased when the number of laser pulses light increased. In addition, the nonlinear absorption coefficient decreased when the number of laser pulses light increased. As a result, the application of these Ag NPs for optical switching devices was investigated, which demonstrated that the large Ag NPs are applicable tools for optical switching devices.
Neda Roostaei, Seyedeh Mehri Hamidi,
Volume 17, Issue 2 (6-2023)
Abstract

Color vision deficiency (CVD), or color blindness, is a prevalent ocular disorder that hinders the recognition of different colors, affecting many people worldwide (8−10% of males and 0.4−0.5% of females). Recently, there has been a significant focus on plasmonic nanostructures as an alternative to chemical dyes for managing color blindness due to their remarkable characteristics and the tunability of plasmonic resonances. In this work, the plasmonic glasses based on silver nanoparticles with a TiO2 thin layer coating were fabricated using the sputtering technique and proposed for blue-yellow (tritanopia) CVD management. The proposed plasmonic glasses based on silver nanoparticles are more selective than commercial Enchroma glasses because of the tunability of plasmonic properties of silver nanoparticles by controlling their morphology, which provides insights for applications of color vision deficiency improvement. Also, the antibacterial activity of the proposed plasmonic glasses based on silver nanoparticles was investigated against E. coli and S. aureus bacteria, which have exhibited effective antibacterial properties. The results indicate that the silver nanoparticle-based glasses not only aid in tritanopia management but also offer potential for antibacterial applications such as implant coatings.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb