Aghil Shaverdi, Mohammad Soroosh, Ehsan Namjoo,
Volume 12, Issue 2 (12-2018)
Abstract
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods inside the ring are important factors which help one to enhance the desired output parameters. The proposed structure is capable of presenting high quality factor near 1937 in conjunction with 0.8 nm pass band. The high coupling efficiency 99% is another advantage of the proposed filter.
Dr Fatemeh Bazouband, Mr Amin Rahimpour,
Volume 15, Issue 2 (7-2021)
Abstract
In this paper, a three ring-resonator serially coupled is considered as an optical filter. We are going to improve the performance of the designed optical filter by increasing the quality factor and finesse of filtered wavelengths. The first and last rings are coupled to the bus waveguides that carry the input and output fields. The effect of coupling parameters and ring radii on the filtering of operating wavelengths which are between 1545-1550 nm with narrow Free Spectral Range (FSR) less than 0.5 nm is investigated. Using the transfer matrix method, all the rotating and output fields are obtained. FSR, Full Width at Half Maximum (FWHM) and Finesse (F) are evaluated by the wavelength response plots of the output ports obtained in Wolfram Mathematica. The behavior of structure is analyzed by a new approach in order to filter the resonant wavelengths of the transmission channel with higher finesse.