Search published articles


Showing 4 results for Localized Surface Plasmon

Foozieh Sohrabi, Seyedeh Mehri Hamidi,
Volume 13, Issue 2 (12-2019)
Abstract

Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-polymeric grating. This structure is composed of metallic grating on the surface of PDMS with different concentration of embedded gold nanoparticles. By sweeping the incident angles, we have seen that the SPP, LSP and their coupling cause two gaps in reflection regime which are originated from SPP supported by thin film gold film and LSP supported by gold nanoparticles. The first gap is attributed to the patterned metallic film because it vanishes by increasing the nanoparticles which may destroy the pattern while the second gap can be formed by embedded nanoparticles because it becomes more considerable by raising the incubation time. Therefore, the drowning time of patterned samples (e.g. 24h, 48h, and 72h) in HAuCl4 plays the key role in adjustability of plasmonic bandgap. Notably, the interaction between SPP and LSP can be the origin of the shift in gap center from 300 to 550. To best of over knowledge, this study is the first study on the plasmonic band gap as a function of both SPP and LSP.


Roya Mombeiny Godazhdar, Ehsan Amooghorban, Ali Mahdifar,
Volume 14, Issue 1 (1-2020)
Abstract

In this paper, we study the entanglement of two-level atoms near a spherical silver nanoparticle. By employing the Von Neumann equation and utilizing of the electromagnetic Green’s tensor associated with a dispersive and dissipative dielectric sphere, the decay rates and the Lamb shift of the atomic system are obtained. Then, by using the concurrence measure, we calculate the degree of entanglement of the atomic system. We observe that the decay rates severely increase near the excitation frequency of the localized plasmon-polariton, while the concurrence value is nearly zero.
 
 
Parisa Khajegi, Majid Rashidi-Huyeh,
Volume 15, Issue 1 (1-2021)
Abstract

Nobel metal nanoparticles (NPs) are widely used in various applications including optical and biological sensors, biomedicine, photocatalysts, electronics, and photovoltaic cells. The optical properties of gold NPs are surveyed in this paper under the Localized Surface Plasmon Resonance (LSPR) effect, which increases the light absorption and scattering at the LSPR wavelength. This LSPR frequency depends on various factors, including the shape and size of the particles as well as incident electromagnetic polarization. Here, the optical response of gold NPs with different shapes and sizes are investigated using the finite element method (FEM). The results show that the bandwidth, amplitude, and LSPR wavelength depend on the shape and dimensions of the NPs as well as the polarization of the incident light. The LSPR wavelength changes from 500 to 650 nm for different shapes of the gold NPs including sphere, octahedral, cube, ellipsoid, triangle, and with identical volume. To study the NP size effect on the optical properties, the absorption and scattering cross-sections (CSs) are also investigated for different sizes of NPs. The results show a redshift in the LSPR wavelength by increasing the NP size.
Neda Roostaei, Seyedeh Mehri Hamidi,
Volume 17, Issue 2 (6-2023)
Abstract

Color vision deficiency (CVD), or color blindness, is a prevalent ocular disorder that hinders the recognition of different colors, affecting many people worldwide (8−10% of males and 0.4−0.5% of females). Recently, there has been a significant focus on plasmonic nanostructures as an alternative to chemical dyes for managing color blindness due to their remarkable characteristics and the tunability of plasmonic resonances. In this work, the plasmonic glasses based on silver nanoparticles with a TiO2 thin layer coating were fabricated using the sputtering technique and proposed for blue-yellow (tritanopia) CVD management. The proposed plasmonic glasses based on silver nanoparticles are more selective than commercial Enchroma glasses because of the tunability of plasmonic properties of silver nanoparticles by controlling their morphology, which provides insights for applications of color vision deficiency improvement. Also, the antibacterial activity of the proposed plasmonic glasses based on silver nanoparticles was investigated against E. coli and S. aureus bacteria, which have exhibited effective antibacterial properties. The results indicate that the silver nanoparticle-based glasses not only aid in tritanopia management but also offer potential for antibacterial applications such as implant coatings.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb