Search published articles


Showing 3 results for Disk Laser

H. Aminpour, A. Hojabri, M. Esmaeili, I. Mashaiekhy Asl2,
Volume 5, Issue 1 (1-2011)
Abstract

In this article, we present a specific shape of disk laser which is side-pumped by four non-symmetric hollow- ducts. The use of non-symmetric hollow duct based on two goals of the uniformity of the pump light distribution profile and the homogeneity of pump light profile through the disk. First of all we simulated the pump light distribution in the disk by using Monte-Carlo ray tracing method. Then, by using finite element analysis (FEA) method, we calculated the absorbed pump light distribution through the disk for 12%, 14% and 20% concentration of Yb+3 ions. Finally, the results of calculation have been presented.
Hamed Amin Pour, Alireza Hojabri,
Volume 6, Issue 1 (10-2012)
Abstract

We present a novel slanted faces of thin-disk composite Yb:YAG YAG laser which is side-pumped by four non-symmetric hollow- ducts. The pump light distribution in the disk is modeled by using Monte-Carlo ray tracing method. The temperature distribution inside the crystal is calculated by taking into account either the concentration of Yb+3 ion or the different transmission of laser output coupler. By using Finite Element Analysis (FEA) method, we calculated the absorption efficiency through the disk. The resonator is simulated by self consistently method. The resulting of optical efficiency and the output power of our laser have been modeled.
Saeid Radmard, Ahmad Moshaii, Mohammad Abazari,
Volume 16, Issue 1 (1-2022)
Abstract

This paper presents the design procedure of folded-resonators for high-average power thin-disk lasers (TDLs). Because of the oblique angle of incidence in the laser path inside the resonator, folded resonators introduce astigmatism. Additionally, the dependency of the dioptric power of the active medium on the pump power made the resonator design more complicated. In the first section of this work, the disk thermal lensing was measured using a wavefront sensor, and the measurement procedure was presented and thoroughly discussed. The disk radius of curvature varied between 4.3 m to 6.4 m depending on the pump power. The disk was considered a variable lens inside the resonator based on the measurement results. V-shaped and L-shaped configurations' stability and M2 factor were predicted, optimized, and compared. Astigmatism in the resonator parameters was considered and discussed. While the V-shaped cavity has better beam quality, the L-shaped cavity has less sensitivity to cavity misalignment. The primary approach of this paper was the resonator design of a cavity-dumped disk laser. However, the designed resonator configurations could be utilized in many laser resonators, such as industrial TDLs (to reduce the overall length of the system) and second harmonic-generation in TDLs.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb