Search published articles


Showing 4 results for Sensitivity

Supriya Patil, A.d. Shaligram,
Volume 5, Issue 2 (7-2011)
Abstract

A novel geometry for enhancing the sensitivity of intensity modulated refractometric fiber optic sensor for detection of adulteration level in diesel by kerosene is proposed. In this multimode plastic optical fiber is uncladded for specific length and bent into S shape. This geometry is simulated and analyzed using Beam Propagation Method in Beam prop RSOFT software. When sensor is immersed in the diesel then diesel acts as a cladding for uncladded S shape portion of optical fiber. As diesel is adulterated by different volumes of kerosene, refractive index of cladding changes which in turn affects the output intensity of the sensor. The investigation revealed that when such structure of sensor is used to detect the adulteration level in diesel then sensitivity gets improved 4 times for two fold increase in bend curvature of fiber. Thus it is highly sensitive mechanism to determine on line adulteration of diesel and also can be used for other applications.
Maryam Soltani, Alireza Keshavarz, Gholamreza Honarasa, Reza Ghayoor,
Volume 13, Issue 1 (1-2019)
Abstract

In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring laser gyroscope on the interference pattern and the sensitivity of the device are studied and simulated using ABCD propagation matrix method. Results show that dielectric-graphene photonic crystal has a high transmission and therefore high efficiency in the wavelength of ring laser gyroscope. So it is a suitable choice to use in the ring laser gyroscope. Also, a comparison between ring laser gyroscope with and without dielectric-graphene photonic crystal shows that when the dielectric-graphene photonic crystal is in the system it is possible to build gyroscope with smaller lengths and high sensitivity.

Mir Vahid Kazempour, Hamid Vahed,
Volume 14, Issue 2 (12-2020)
Abstract

In this paper, we propose a D-shaped plasmonic optical biosensor based on photonic crystal fiber (PCF) to detecting of the different materials such as water, blood plasma, Yd-10B and hemoglobin by using of the refractive index. The gold layer is coated on the polished surface of D-shaped fiber. To achieve the highest sensitivity of the proposed biosensor, we investigated the effects of variation of the gold layer thickness and the other structure parameters such as hole diameter (d) and the distance between two holes or Pitch (L). The results show that the most sensitivity of the proposed biosensor is 2506 nm per refractive index unit (nm/RIU) with the resolution of 1.25×10-5 RIU, when d=1.4 µm and Λ=1.9 µm with the gold layer thickness of 45nm.
Akram Kabiri, Abbas Azarian,
Volume 15, Issue 1 (1-2021)
Abstract

Plasmonic nanosensors have emerged as a powerful tool for biosensing and other applications. Therefore, efforts are underway to achieve higher sensitivity for these nanosensors. In line with this goal, we have investigated the sensitivity of silver square and triangular chiral nanosensors based on two strategies, Localized Surface Plasmon Resonance (LSPR)-based and Circular Dichroism (CD)-based sensing. Chiral nanostructure parameters (height, diameter) and the angle of incidence light have been optimized with calculation method (3-D finite-difference time-domain (3-D- FDTD)) in order to obtain best localized surface plasmon resonance and consequently the highest sensitivity. The calculation results show that sensitivitys~1727 and 1658nmRIU-1 can be achieved in LSPR- and CD-based sensing method respectively for square chiral nanostructure, which are significantly more than previous works.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb