Search published articles


Showing 2 results for Schrödinger Equation

Mr. Farshid Koohi-Kamali, Dr. Majid Ebnali-Heidari, Mohammad Kazem Moravvej-Farshi,
Volume 6, Issue 2 (10-2012)
Abstract

We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by solving a set of coupled generalized nonlinear Schrödinger equations. This approach allows one to obtain wavelength-flattened dispersion characteristics with bandwidth of   in the ITU region, and large walk-off length simply by choosing a suitable infiltrated refractive index. We also demonstrate that under certain conditions one can observe a pulse break-up effect to generate pulse trains with high repetition rate.
Forouq Hosseinzadeh, Saeed Batebi, Mostafa Qadiri Soofi,
Volume 12, Issue 1 (1-2018)
Abstract

high harmonic generation is a useful tool for the generation of short, intense attosecond pulses. In order to simulate high harmonic generation, we performed a numerical solution to the time dependent Schrödinger equation. by considering dipole approximation, we predicted generation of a 53 attosecond pulse. In order to see the time and frequency of emission of attosecond pulse, we exploit time frequency analysis. On the other hand, because of uncertainty between time and frequency, it would be of high importance whether which analysis is been applied. our studies show that Gabor analysis exhibits the least uncertainty between time and frequency components. And at least, we set the balance between time and frequency distribution by altering the window size.  



Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb