Showing 3 results for Photonic Crystals
Dr. Samad Roshan Entezar, Mrs Arezo Rashidi ,
Volume 8, Issue 2 (7-2014)
Abstract
In this paper, properties of reflection phase in one-dimensional quaternary photonic crystals combining dispersive meta-materials and positive index materials are investigated by transfer matrix method. Two omnidirectional band gaps are located in the band structure of considered structure. However, we limit our studies to the frequency range of the second wide band gap. We observe that the value of the reflection phase difference between TE and TM waves can be controlled by changing the incident angle and frequency. Also, the results show that the reflection phase difference in the second band gap increases by increasing the incident angle, and remains almost unchanged in a broad frequency band. Furthermore, at two points near to the edges of the gap the reflection phase difference keeps almost zero in spite of the change of incident angle. Based on these properties, phase compensators and omni-directionally synchronous reflectors and also polarizers can be designed.
Dr Vahid Ahmadi, Mr Saeed Pahlavan,
Volume 10, Issue 1 (4-2016)
Abstract
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-case (RSC) photonic crystals. The RSC crystal is then converted to more common structures like pillar crystals by matching Fourier coefficients of periodic electric permittivity. Methods to design common crystals which have approximately equal Fourier components to the RSC crystal are also discussed. The proposed procedure can be used to design metamaterials without the difficulties of large trial and error. The devised procedure can also be applied in designing other structures involving photonic crystals.
Mohammadreza Mehdipour, Vahid Ahmadi, Reza Poursalehi,
Volume 14, Issue 1 (1-2020)
Abstract
Topological Insulators are systems where the broken time reversal symmetry gives rise to protected edge modes that support backscatter-free and one-way propagation of electromagnetic waves by opening non-trivial bandgaps. In this study we investigate a one-way topologically protected waveguide in the frequency range of f=6.0 to 8.0 GHz. The time reversal symmetry is broken by an applied magnetic field in the z direction. We show that the waveguide propagates the light in only one direction that can be controlled by the applied magnetic field and no backscattering is present in the waveguide which results in a near 100% transmission of light to the output. Furthermore, we investigate effect of the applied magnetic field on the topological properties of the system by considering the material dispersion of the rods. Our results show that 3 different frequency ranges will be supported by the edge modes at each given magnetic field. By increasing the magnitude of the applied magnetic field, a blue shift in the non-trivial bandgap is seen, where it can be used to tailor the modes for the waveguide.