Search published articles


Showing 7 results for Nanostructure

J. Mostafavi-Amjad, H. R. M Khalesifard,
Volume 2, Issue 1 (2-2008)
Abstract

Micro-channels are made over the Ag+/Na+ ion-exchanged soda-lime glass surface by interaction of an intense Ar+ laser beam and the silver ions inside the glass matrix. The Ar+ laser beam reduces the Ag+ ions inside the matrix. The Ag+ atoms aggregate into silver nano-clusters around the interaction area, inside the glass matrix. Aggregation of the silver atoms and the thermal effects of the interaction, changes the geometrical profile of the glass surface. This phenomenon has been used to produce micro-sized channels over the glass surface. During the interaction the glass has moved under the focused laser beam in two dimensions by resolution of 300 nm via a computer controlled xyz sub-micro-positioner to produce the channel walls. Using this technique, micro-channels of 0.3 μm deep and arbitrary width have been made. The height of the produced wall has been determined by interferometry techniques.
Mrs. Hajar Ghanbari, Dr. Rasoul Sarraf-Mamoory, Prof. Jamshid Sabbagh Zadeh, Mr. Ali Chehrghani, Dr. Rasoul Malekfar,
Volume 7, Issue 2 (8-2013)
Abstract

In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures in benzene, spiral integrated forms in toluene, organic integrated networks in hexane, and nanoparticles in ethanol were formed. In n-methyl-2-pyrrolidone (NMP), sheets and bulk deformed structures were seen. Also, in Dimethylacetamide, particles in different stages of growth could be detected. The nonlinear optical absorption (NLA) behaviors of the products were investigated by exposing them to a 532 nm nanosecond laser using the Z-scan technique. The saturated NLA coefficient, obtained from structures of NMP and hexane-based synthesized samples, are 1.1×10-8 and 2.4×10-8 cm W-1, respectively. The saturable absorption responses of these samples were switched to the reverse saturable absorption responses in the other synthesis mediums. The maximum nonlinear absorption coefficient of 10.2×10-8 cm W 1 was measured for spiral integrated superstructures, produced in the toluene medium.
Vahid Eskandari, Nafiseh Sharifi,
Volume 14, Issue 1 (1-2020)
Abstract

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to detect vibrational modes of phenylalanine amino acid up to the concentration of 10-7 M. The importance of phenylalanine amino acid detection is due to the early diagnosis of phenylketonuria in neonates. Therefore, the blood plasma of a healthy neonate and a neonate with phenylketonuria disease were adsorbed on the SERS substrates. They enhance the intensity of molecular vibration peaks of phenylalanine amino acid of two kinds of blood plasmas. The intensities of molecular vibrations of unhealthy plasma are stronger than healthy plasma due to the higher concentrations of phenylalanine amino acid, which is the sign of Phenylketonuria disease.

 
Leila Sheikhi, Abbas Azarian,
Volume 14, Issue 2 (12-2020)
Abstract

In hollow nanostructures, the inner and outer surface plasmons couple together that provides interesting plasmonic properties resulting in the enhancement of the plasmonic field. In addition, triangular structures are interesting for plasmonic applications due to their sharp corners and low symmetry. In this work, gold triangular nanostructures with triangular (TTN) and circular (CTN) holes in their centers have been simulated using the FDTD method and their plasmonic properties have been compared. The extinction spectra of the structures display that CTN has only one plasmonic peak, whereas TTN has several plasmonic modes due to its lower symmetry. Each peak presents different interactions between the multipoles that understand from the charge density distribution. Also, the figure of merit (FOM) of the peaks has been calculated and a high value of 33 is obtained for one of the TTN modes, which is appropriate for sensing application.
Akram Kabiri, Abbas Azarian,
Volume 15, Issue 1 (1-2021)
Abstract

Plasmonic nanosensors have emerged as a powerful tool for biosensing and other applications. Therefore, efforts are underway to achieve higher sensitivity for these nanosensors. In line with this goal, we have investigated the sensitivity of silver square and triangular chiral nanosensors based on two strategies, Localized Surface Plasmon Resonance (LSPR)-based and Circular Dichroism (CD)-based sensing. Chiral nanostructure parameters (height, diameter) and the angle of incidence light have been optimized with calculation method (3-D finite-difference time-domain (3-D- FDTD)) in order to obtain best localized surface plasmon resonance and consequently the highest sensitivity. The calculation results show that sensitivitys~1727 and 1658nmRIU-1 can be achieved in LSPR- and CD-based sensing method respectively for square chiral nanostructure, which are significantly more than previous works.
Mr Saeed Ranjbar, Dr. Abbas Azarian,
Volume 15, Issue 2 (7-2021)
Abstract

In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, wavelength and full width at half maximum (FWHM) of extinction cross-section peaks (from plasmon resonances) based on the size of nanoparticles and the environment dielectric constant were surveyed. The results showed that only two peak modes, named dipole peak and quadrupole peak, exist in this spectrum, such as spherical particles.
Sahar Sohrabi, Hedieh Pazokian, Mohsen Montazerolghaem,
Volume 17, Issue 2 (6-2023)
Abstract

Laser pulse overlapping (LPO) is an important factor affect the behavior of the laser treated surfaces. For laser surface treatment especially at high fluences, the laser beam must be focused to reach the desired fluence. Then laser beam or sample scanning in 2 directions is done to treat a surface area. In this paper, effect of the distance between laser treated lines (scanned in x direction) on the surface properties including morphological changes and wettability modifications of 304 stainless steel is investigated. The results show that the morphology and chemistry of the surface are influenced effectively by changing the overlap between laser treated line on the surface. Then, it should be considered as an important parameter in laser modification of a large surface with focused laser beam.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb