Dr. Samad Roshan Entezar,
Volume 15, Issue 2 (7-2021)
Abstract
We theoretically analyze the sensing properties of a one-dimensional photonic crystal-based biosensor for detecting cancer cells infiltrated in a defect cavity layer. The biosensor consists of a sample cavity layer sandwiched between two identical photonic crystals of Hgba2Ca2Cu3O8+d and GaAs. We use the transfer matrix method to evaluate the performance of the biosensor. We show that a defect mode appears in the transmission spectrum of the biosensor that its position depends on the type of cancer cells in the cavity layer. The analysis is carried out by comparing the transmittance peaks of the cancer cells with the normal cells. We investigate the performance of the biosensor under different hydrostatic pressures and temperatures. We show that one can use temperature change to fine-tune the frequency of the defect modes. In addition, we can adjust the working area of the biosensor by changing the hydrostatic pressure. It is shown that the sensitivity of the biosensor is independent of the temperature, while it strongly depends on the hydrostatic pressure.
Sarah Bolandnazar, Samad Roshan Entezar,
Volume 17, Issue 1 (1-2023)
Abstract
In this article, we provide a theoretical investigation into the reshaping of flat-top pulses in a one-dimensional, homogeneous, isotropic, finite-size photonic crystal with two defect layers. We use Fourier transform to find frequency and time spectra, and transfer matrix to determine transmission spectra to find the average duration and power of the output pulse. The pulses with a carrier frequency near the defect mode center and a wide frequency spectrum, undergo the most significant reshaping. Reshaping is strongest for narrow pulses with a carrier frequency at defect mode peaks. The maximum power and duration of the output pulse of a spectrally narrow pulse are all proportional to the pulse duration and exhibit extremes at the frequencies of the defect mode peaks. The power and average duration of a spectrally wide pulse's output pulse are not affected by the carrier frequency.