Marjan Jafari, Mahoor Mahdavi,
Volume 14, Issue 1 (1-2020)
Abstract
This paper aims to evaluate the time-dependent Casimir-Polder force of a moving chiral molecule and a magnetodielectric chiral body at finite temperature. The chiral body can be an ensemble of molecules in a biological environment. The temporal evolution of the Casimir-Polder force is considered. The dynamical Casimir-Polder is arising from the movement of the chiral molecule and self-dressing effect is calculated and specific dependence of the force on the velocity, distance and material properties are found. To give an example, the Casimir force of a dimethyl disulfide, which moves above a perfect mirror with positive chirality, is studied. It was observed that the self-dressing part of the Casimir-Polder force was larger than the velocity-dependent part.