Showing 2 results for Sharma
A. Gaur, D. Sharma, P. Gaur, B.p. Malik, N. Singh,
Volume 4, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 4, No. 2, Summer-Fall 2010)
Abstract
The Photoexcited carrier lifetime (τ) and peak to valley transmission difference (ΔTp-v) in direct and indirect band gap crystals has been investigated by the use of single beam open and closed aperture z-scan technique using frequency doubled Nd:YAG laser. The peak to valley transmission difference (ΔTp-v) is found to be of the order of 10-2 in case of direct band gap crystals and of the order of 10-3 in case of indirect band gap crystals. The carrier life time (τ) is found to be in nanoseconds range in case of direct band gap crystals and picoseconds range in case of indirect band gap crystals. Lower value of (τ) and (ΔTp-v) in case of indirect band gap crystals can be attributed to the reduction in the value of carrier density (N) and small value of nonlinear phase shift ( Δϕ ),respectively.
Sarang Medhekar, Puja Sharma, Man Mohan Gupta, Nilaksha Ghosh,
Volume 16, Issue 2 (Summer-Fall 2022)
Abstract
In this paper, a structure is proposed using ring resonator created on 2D photonic crystal (PC) that acts as an add-drop filter (ADF) in all-optical communication systems. The same structure can also act as refractive index (RI) and temperature sensor. The structure is made up of a hexagonal lattice of air holes in a dielectric slab of silicon with the refractive index of 3.46. The band diagram of the considered structure is obtained using plane wave expansion (PWE) method, and optical propagation through it is simulated using finite difference time domain (FDTD) method. The computational analysis is performed on different structural and physical parameters. Transmission efficiency, quality factor and bandwidth are investigated by varying (i) lattice constant (ii) radius of holes of different parts of the structure and (iii) refractive index of different parts of the structure. The chosen parameters result in operating wavelength around 1550 nm. The designed ADF has a footprint of only 68µm2 and a dropping efficiency of 100%. The sensitivity of the structure is determined by determining shifts in the resonance wavelength as a function of the RI of the holes/slab. The designed structure exhibits desirable features like (i) narrow bandwidth of 1.5 nm, (ii) high-quality factor of 1033, (iii) low detection limit of 3.6´10-4 RIU, (iv) high RI sensitivity of 407 nm/RIU, and (v) high temperature sensitivity of 104 pm/K.