Naemeh Aeineh, Nafiseh Sharifi, Abbas Behjat,
Volume 12, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 12, No 2, Summer-Fall 2018)
Abstract
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells with Au@SiO2 nanoparticles deposited at the bottom of the mesoporous TiO2 layers demonstrated an improved photocurrent performance compared to the reference cells. This structure shows a short-circuit current density (JSC) of 20.7 mA/cm2 and open circuit voltage of 1081 mV. This enhancement may be attributed either to the interface surface engineering or plasmonic resonance of Au@SiO2 nanoparticles depends to the NPs size and position.
Vahid Eskandari, Nafiseh Sharifi,
Volume 14, Issue 1 (Winter-Spring 2020)
Abstract
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to detect vibrational modes of phenylalanine amino acid up to the concentration of 10-7 M. The importance of phenylalanine amino acid detection is due to the early diagnosis of phenylketonuria in neonates. Therefore, the blood plasma of a healthy neonate and a neonate with phenylketonuria disease were adsorbed on the SERS substrates. They enhance the intensity of molecular vibration peaks of phenylalanine amino acid of two kinds of blood plasmas. The intensities of molecular vibrations of unhealthy plasma are stronger than healthy plasma due to the higher concentrations of phenylalanine amino acid, which is the sign of Phenylketonuria disease.