Search published articles


Showing 3 results for Hosseinzadeh

Forouq Hosseinzadeh, Saeed Batebi, Mostafa Qadiri Soofi,
Volume 12, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 12, No 1, Winter-Spring 2018)
Abstract

high harmonic generation is a useful tool for the generation of short, intense attosecond pulses. In order to simulate high harmonic generation, we performed a numerical solution to the time dependent Schrödinger equation. by considering dipole approximation, we predicted generation of a 53 attosecond pulse. In order to see the time and frequency of emission of attosecond pulse, we exploit time frequency analysis. On the other hand, because of uncertainty between time and frequency, it would be of high importance whether which analysis is been applied. our studies show that Gabor analysis exhibits the least uncertainty between time and frequency components. And at least, we set the balance between time and frequency distribution by altering the window size.  


Fatemeh Aghili, Saeed Batebi, Forouq Hosseinzadeh,
Volume 13, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 13, No 2, Summer-Fall 2019)
Abstract

We solved one dimensional Schrodinger equation in a H2+ molecular environment by using 3 femtosecond homogeneous and nonhomogeneous laser fields. In homogeneous case, we found out that larger inter nuclear distances result in earlier ionization and also more instability in the wave packet. We deducted that the more the instability is, the more modulated the power spectrum will be. So, by choosing a fixed 1.96 atomic units inter nuclear distance, we investigated high harmonic generation in both linear and nonlinear nonhomogeneous laser pulses. We observed that in comparison with the linear case, in nonlinear one, the plateau possessed higher intensity harmonics. On the other hand, in this case, cutoff order occurred on higher frequency. By superposing several harmonics near cutoff region, we predicted the generation of a 73 attosecond pulse.


Farshad Sohbatzadeh, Mojgan Barzegar, Colagar Abasalt Hosseinzadeh Colagar,
Volume 15, Issue 2 (Summer-Fall 2021)
Abstract

Pulsed UV sterilizer lamps and cold atmospheric pressure plasma are the newest technologies that have been proposed as feasible alternatives in the traditional sterilization method. The main objective of this project was to compare the sterilization effect of these two technologies (Pulsed UV lamps and cold atmospheric pressure plasma) with continuous UV lamps on Escherichia coli bacteria. Although Continuous UV lamps are widely used in different organizations such as hospitals for sterilization, they take hours to sterilize the medium. There are methods that can effectively decay the bacteria surface in a few minutes; it is called cold atmospheric plasma jet. Since sterilization has gained lots of attention, many researches are performing by other methods. This project releases how atmospheric plasma can strongly influence better on decaying Escherichia coli bacteria compared to two other techniques; Xenon arc lamp, continuous UV lamp. The results suggested that the xenon pulsed flash lamps with Pyrex envelope have the ability to sterilize the surface of the bacterium with at least 80 pulses. The results of atmospheric plasma flow on the bacterial surface have been proved that the reactive species (OH radicals, charged particles, NO, ozone, O3, in the plasma jet caused a significant decline in the colony numbers; after 6 minutes treatment by plasma jet, there was a great reduction in the number of colonies up to zero. Also, the effect of the commercial continuous UV sterilizer lamp was used and its sterilization results were compared to pulsed flash lamps and cold atmospheric plasma. These results demonstrate that pulsed light treatment can be effective on destroying Escherichia coli bacteria due to its high energy and short operating time.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb