Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 55-64 | Back to browse issues page


XML Print


1- Atomic and Molecular Group, Faculty of Physics, University of Kashan, Kashan, Iran
2- Atomic and Molecular Group, Faculty of Physics, University of Kashan, Kashan, Iran. & Physics Department, Faculty of Basic Sciences, Khatam al Anbia University, Tehran, Iran
Abstract:   (2022 Views)
One of the main challenges for perovskite solar cell (PSCs) structures is their high sensitivity to humidity and ambient temperature, which significantly lowers the lifespan of these devices. Low stability of this devices is considered one of the principal limitations to make them commercialized. To increase the stability of the solar cell is to encapsulate the solar cell. The encapsulation is to cover the device with a non-reactive material, which prevents the penetration of ambient moisture and increases the thermal stability of the cell. If the uncoated device is exposed to continuous incident light for several hours, its structure is damaged while encapsulated device has a longer duration time. Several methods have been proposed for encapsulating a perovskite solar cell. The principal strategy of these methods involves deposition of a thin layer of polycarbonate polymer on the perovskite solar cell structure, resulting in layers of the desired structure. After fabrication and encapsulation process, the order of the various layers are FTO / bl-TiO2 / mp-TiO2 / Perovskite (CH3NH3PbI3) / Spiro-OMETAD / Au / Polycarbonate Polymer. To increase the effective stability, the glass coating is placed on the polycarbonate polymer. After acquiring sufficient adhesion between the glass coating and the polymer layer on the structure of PSCs, UV epoxy is used to seal the whole structure. Having performed the encapsulation, the samples were exposed every day to 85% constant humidity and 85°C temperature for 10 hours and it was observed that the cell efficiency, under the mentioned conditions and after successive measurements, maintained to a high extent.
Full-Text [PDF 390 kb]   (1206 Downloads)    
Type of Study: Research | Subject: General
Received: 2021/06/18 | Revised: 2021/09/28 | Accepted: 2021/10/22 | Published: 2021/12/30

References
1. P. Boland, K. Lee, and G. Namkoong, "Device optimization in PCPDTBT: PCBM plastic solar cells," Solar Energy Materials and Solar Cells, Vol. 94, pp. 915-920, 2010. [DOI:10.1016/j.solmat.2010.01.022]
2. C. Liang, Y. Wang, D. Li, X. Ji, F. Zhang, and Z. He, "Modeling and simulation of bulk heterojunction polymer solar cells," Solar energy materials and solar cells, Vol. 127, pp. 67-86, 2014. [DOI:10.1016/j.solmat.2014.04.009]
3. F. Jahantigh and M.J. Safikhani, "The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): a SCAPS-1D simulation study," Appl. Phys. A, Vol. 125, pp. 276 (1-7), 2019. [DOI:10.1007/s00339-019-2582-0]
4. F. Jahantigh, S.M.B. Ghorashi, and S. Mozaffari, "Orange photoluminescent N-doped graphene quantum dots as an effective co-sensitizer for dye-sensitized solar cells," J. Solid State Electrochemistry, Vol. pp. 1-7, 2020. [DOI:10.1007/s10008-020-04515-3]
5. F. Jahantigh, S.B. Ghorashi, and A. Bayat, "Hybrid dye sensitized solar cell based on single layer graphene quantum dots, Dyes and Pigments," Vol. 175, pp. 108118, 2020. [DOI:10.1016/j.dyepig.2019.108118]
6. P.V. Kamat, "Meeting the clean energy demand: nanostructure architectures for solar energy conversion," J. Phys. Chem. C, Vol. 111,pp. 2834-2860, 2007. [DOI:10.1021/jp066952u]
7. F. Jahantigh, S.B. Ghorashi, and A.R. Belverdi, "A first principle study of benzimidazobenzophenanthrolin and tetraphenyldibenzoperiflanthene to design and construct novel organic solar cells," Physica B: Condensed Matter, Vol. 542, pp. 32-36, 2018. [DOI:10.1016/j.physb.2018.04.033]
8. H. Etesami, M. Mansouri, A. Habibi, and F. Jahantigh, "Synthesis and investigation of double alternating azo group in novel para-azo dyes containing nitro anchoring group for solar cell application," J. Molecular Structure, Vol. 1203, pp. 127432, 2020. [DOI:10.1016/j.molstruc.2019.127432]
9. J.-A. Jeong and H.-K. Kim, "Al2O3/Ag/Al2O3 multilayer thin film passivation prepared by plasma damage-free linear facing target sputtering for organic light emitting diodes," Thin Solid Films, Vol. 547, pp. 63-67, 2013. [DOI:10.1016/j.tsf.2013.05.003]
10. J.A. Christians, P.A. Miranda Herrera, and P.V. Kamat, "Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air," J. the Amer. Chem. Soc. Vol. 137, pp. 1530-1538, 2015. [DOI:10.1021/ja511132a] [PMID]
11. J. Yang, B.D. Siempelkamp, D. Liu, and T.L. Kelly, "Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques," ACS nano, Vol. 9, pp. 1955-1963, 2015. [DOI:10.1021/nn506864k] [PMID]
12. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano Lett. Vol. 13, pp. 1764-1769, 2013. [DOI:10.1021/nl400349b] [PMID]
13. M. Tavakoli, F. Jahantigh, and H. Zarookian, "Adjustable high-power-LED solar simulator with extended spectrum in UV region," Solar Energy, Vo. 220, pp. 1-7, 2020. [DOI:10.1016/j.solener.2020.05.081]
14. H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, and S. Tretiak, "High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells," Nature, Vol. 536, pp. 312-316, 2016. [DOI:10.1038/nature18306] [PMID]
15. M. Zhang, J.S. Yun, Q. Ma, J. Zheng, C.F.J. Lau, X. Deng, J. Kim, D. Kim, J. Seidel, and M.A. Green, "High-efficiency rubidium-incorporated perovskite solar cells by gas quenching," ACS Energy Lett. Vol. 2, pp. 438-444, 2017. [DOI:10.1021/acsenergylett.6b00697]
16. Z. Wei, X. Zheng, H. Chen, X. Long, Z. Wang, and S. Yang, "A multifunctional C+ epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments," J. Mater. Chem. A, Vol. 3, pp. 16430-16434, 2015. [DOI:10.1039/C5TA03802B]
17. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, and H.J. Snaith, "Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells," Nano Lett. Vol. 14 , pp. 5561-5568, 2014. [DOI:10.1021/nl501982b] [PMID]
18. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, and Y. Yang, "A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability," science, Vol. 345, pp. 295-298, 2014. [DOI:10.1126/science.1254763] [PMID]
19. S. Guarnera, A. Abate, W. Zhang, J.M. Foster, G. Richardson, A. Petrozza, and H.J. Snaith, "Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer," J. Phys. Chem. Lett. Vol. 6, pp. 432-437, 2015. [DOI:10.1021/jz502703p] [PMID]
20. D. Yang, Z. Yang, W. Qin, Y. Zhang, S.F. Liu, and C. Li, "Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition," J. Mater. Chem. A, Vol. 3, pp. 9401-9405, 2015. [DOI:10.1039/C5TA01824B]
21. N. Tripathi, M. Yanagida, Y. Shirai, T. Masuda, L. Han, and K. Miyano, "Hysteresis-free and highly stable perovskite solar cells produced via a chlorine-mediated interdiffusion method," J. Mater. Chem. A, Vol. 3, pp. 12081-12088, 2015. [DOI:10.1039/C5TA01668A]
22. L. Olson, S. Kundu, M. Gross, and A. Joly, "Damp heat effects on CIGSS and CdTe cells," in: Proc. DOE SETP Review Meeting, Citeseer, pp. 17-19, 2007.
23. R. Sundaramoorthy, F. Pern, and T. Gessert, "Preliminary damp-heat stability studies of encapsulated CIGS solar cells," in: Reliability of Photovoltaic Cells, Modules, Components, and Systems III, International Society for Optics and Photonics, 2010, pp. 77730Q. [DOI:10.1117/12.863076]
24. F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, and A. Di Carlo, "Encapsulation for long-term stability enhancement of perovskite solar cells," Nano Energy, Vol. 30, pp.162-172, 2016. [DOI:10.1016/j.nanoen.2016.09.041]
25. F. Jahantigh and S. Bagher Ghorashi, "Optical simulation and investigation of the effect of hysteresis on the perovskite solar cells," Nano, Vol. 14, pp. 1950127 (1-36), 2019. [DOI:10.1142/S1793292019501273]
26. T.J. Wilderspin, F. De Rossi, and T.M. Watson, "A simple method to evaluate the effectiveness of encapsulation materials for perovskite solar cells," Solar Energy, Vol. 139, pp. 426-432, 2016. [DOI:10.1016/j.solener.2016.09.038]
27. J. Li, R. Xia, W. Qi, X. Zhou, J. Cheng, Y. Chen, G. Hou, Y. Ding, Y. Li, and Y. Zhao, "Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization," J. Power Sources, Vol. 485, pp. 229313 (1-15), 2021. [DOI:10.1016/j.jpowsour.2020.229313]
28. B. McKenna, J.R. Troughton, T.M. Watson, and R.C. Evans, "Enhancing the stability of organolead halide perovskite films through polymer encapsulation," RSC Adv. Vol. 7, pp. 32942-32951, 2017. [DOI:10.1039/C7RA06002E]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.