دوره 17، شماره 1 - ( 10-1401 )                   جلد 17 شماره 1 صفحات 102-93 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pourahmad R, Shahidi S, Sari A, Hantezadeh M. Laser Ablation Method for Synthesizing Different Types of Carbon Nanostructures in Presence of Graphite Target. IJOP 2023; 17 (1) :93-102
URL: http://ijop.ir/article-1-548-fa.html
Laser Ablation Method for Synthesizing Different Types of Carbon Nanostructures in Presence of Graphite Target. . 1401; 17 (1) :93-102

URL: http://ijop.ir/article-1-548-fa.html


چکیده:   (166 مشاهده)
In this research, an attempt is made to approach a specific type of carbon, such as graphene or carbon nanotubes by using pulsed laser ablation technique in deionized water environment with changing the laser factors such as wavelength and fluence. Nd:YAG laser with two wavelengths of 1064 and 532 nm and three fluence of 0.8, 1 and 1.2 J/cm2 were selected that number of pulses was 5000 with a frequency of 10 Hz to be irradiated on the graphite target at about 10 minutes. The medium was distilled water. Graphite was located in the 40 ml of distilled water.
The effects of wavelength and fluence of the laser have been experimentally investigated on types of carbon characteristics with different analysis such as Raman scattering spectrum, FE-SEM images, UV–Vis-NIR spectrum and X-ray diffraction (XRD). By using the mentioned analysis, the type of synthesized nano carbon is studied.
This study evaluates the effects of the pulse energy and laser wavelength on properties of synthesized carbon nanoparticle in laser ablation method in medium of distilled water.

 
     
نوع مطالعه: پژوهشي | موضوع مقاله: لیزرها، تقویت کننده‌‏های اپتیکی و اپتیک لیزر
دریافت: 1402/9/10 | ویرایش نهایی: 1403/3/8 | پذیرش: 1403/1/16 | انتشار: 1401/10/30

فهرست منابع
1. M. Spellauge, F.-C. Loghin, J. Sotrop, M. Domke, M. Bobinger, A. Abdellah, M. Becherer, P. Lugli, and H.P. Huber, "Ultra-short-pulse laser ablation and modification of fully sprayed single walled carbon nanotube networks," J. Carbon, Vol. 138, pp. 234-242, 2018. [DOI:10.1016/j.carbon.2018.05.074]
3. I. Boerasu and M. Enachescu, "Pulsed Laser Ablation Synthesis of Carbon Nano-Structures: Effect of Target Composition and Laser Ablation Condition on Their Yield and Morphology," pp. 61-82, 2014, https://api.semanticscholar.org/CorpusID:223113972.
4. F. Kazemizadeh, S. Moemen Bellah, and R. Malekfar, "Optimization of cooling devices used in laser ablation setups for carbon nanotube synthesis," J. Laser Appl., Vol. 29, pp. 042004(1-5), 2017. [DOI:10.2351/1.4990494]
6. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, and Z. Zhang, "Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature," Appl. Phys. Lett., Vol. 72, pp. 1966-1968, 1998. [DOI:10.1063/1.121236]
8. A.A. Puretzky, D.B. Geohegan, X. Fan, and S.J. Pennycook, "In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization," Appl. Phys. Lett., Vol. 76, pp. 182-184, 2000. [DOI:10.1063/1.125696]
10. F. Kazeimzadeh, R. Malekfar, and M. Houshiar, "The effect of graphitic target density on carbon nanotube synthesis by pulsed laser ablation method," Amer. Inst. Phys., Vol. 110, pp. 020018(1-4), 2017. [DOI:10.1063/1.5018950]
12. E. Solati, E. Vaghri, and D. Dorranian, "Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation," Appl. Phys. A, Vol. 124, pp. 749(1-9), 2018. [DOI:10.1007/s00339-018-2176-2]
14. E.A. Ganash, G.A. Al-Jabarti, and R.M. Altuwirqi, "The synthesis of carbon-based nanomaterials by pulsed laser ablation in water," Mater. Research Express, Vol. 7, pp. 015002(1-10), 2020. [DOI:10.1088/2053-1591/ab572b]
16. P. Mahdian Asl and D. Dorranian, "Effect of liquid medium temperature on the production rate and quality of graphene nanosheets produced by laser ablation," Opt Quantum Electron., Vol. 48, pp. 535(1-12), 2016. [DOI:10.1007/s11082-016-0793-6]
18. H. Sadeghi, E. Solati, and D. Dorranian, "Producing graphene nanosheets by pulsed laser ablation: Effects of liquid environment," J. Laser Appl., Vol. 31, pp. 042003(1-11), 2019. [DOI:10.2351/1.5109424]
20. E. Ghavidel, A.H. Sari, and D. Dorranian, "Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method," Opt. Laser Technol., Vol. 103, pp. 155-162, 2018. [DOI:10.1016/j.optlastec.2018.01.034]
22. E. Vaghri and D. Dorranian, "Effect of ablation environment on the characteristics of graphene nanosheets produced by laser ablation," Studia UBB Chemia, LXI., Vol. 4, pp. 277-284, 2016.
23. R. Hameed, K.S. Khashan, and G.M. Sulaiman, "Preparation and characterization of graphene sheet prepared by laser ablation in liquid," Materials Today: Proc., Vol. 20, pp. 535-539, 2019. [DOI:10.1016/j.matpr.2019.09.185]
25. A. Hahn, S. Barcikowski, and B.N. Chichkov, "Influences on Nanoparticle Production during Pulsed Laser Ablation," JLMN- J. Laser Micro/Nanoeng., Vol. 3, pp. 73-77, 2008. [DOI:10.2961/jlmn.2008.02.0003]
27. H. Sadeghi, E. Solati, and D. Dorranian, "Producing grapheme nanosheets by pulsed laser ablation: Effects of liquid environment," J. Laser Appl., Vol. 31, pp. 042003(1-11), 2019. [DOI:10.2351/1.5109424]
29. M. Censabellaa,b, V. Torrisic, S. Boninellib, C. Bongiornob, M.G. Grimaldia, and F. Ruffino, "Laser ablation synthesis of mono- and bimetallic Pt and Pd nanoparticles and fabrication of Pt-Pd/Graphene nanocomposites," Appl. Surface Science, Vol. 475, pp. 494-503, 2019. [DOI:10.1016/j.apsusc.2019.01.029]
31. P. Nasiri, D. Doranian, and A.H. Sari, "Synthesis of Au/Si nanocomposite using laser ablation method," Opt. Laser Technol., Vol. 113, pp. 217-224, 2019. [DOI:10.1016/j.optlastec.2018.12.033]
33. P. Ghoranneviss, D. Dorranian, and A.H. Sari, "Effects of laser fluence on the Cd(OH)2/CdO nanostructures produced by pulsed laser ablation method," Opt. Quantum Electron., vol. 51, pp. 88(1-10), 2019. [DOI:10.1007/s11082-019-1809-9]
35. E.N. Ghaem, D. Dorranian, and A.H. Sari, "Characterization of cobalt oxide nanoparticles produced by laser ablation method: effects of laser fluence," Physica E: Low-dimensional Systems Nanostructures., Vol. 115, pp. 113670(1-19), 2020. [DOI:10.1016/j.physe.2019.113670]
37. N. Tabatabaie and D. Dorranian, "Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen," Appl. Phys. A, Vol. 122, pp. 558(1-9), 2016. [DOI:10.1007/s00339-016-0091-y]
39. E. Vaghria, Z. Khalajb, and D. Dorranian, "Investigating the Effects of different liquid environments on the characteristics of multilayer graphene and graphene oxide nanosheets synthesized by green laser ablation method," Diamond Related Mater., Vol 103, pp. 107696(1-9), 2020. [DOI:10.1016/j.diamond.2020.107697]
41. P. OhadiFar, S. Shahidi, and D. Dorranian, "Synthesis of Silver Nanoparticles and Exhaustion on Cotton Fabric Simultaneously Using Laser Ablation Method," J. Nat. Fib., Vol. 17, pp. 1295-1306, 2018. [DOI:10.1080/15440478.2018.1558160]
43. M. Ghoranneviss, S. Shahidi, A. Anvari, Z. Motaghi, J. Wiener, and I. Slamborova, "Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics," Progr. Org Coatings, Vol. 70, pp. 388-393, 2011. [DOI:10.1016/j.porgcoat.2010.11.017]
45. S. Shahidi, M. Rashidian, and D. Dorranian, "Preparation of antibacterial textile using laser ablation method," Opt. Laser Technol, Vol. 99, pp. 145-153, 2018 [DOI:10.1016/j.optlastec.2017.08.025]
47. S. Moniri, M.R. Hantehzadeh, M. Ghoranneviss, and M. Asadi Asadabad, "Synthesis and characterization of platinum nano sized particles by laser ablation in C2H6O2 solution," Opt. Quantum Electron., Vol. 49, pp. 174(1-20), 2017. [DOI:10.1007/s11082-017-1007-6]
49. S. Parsian, M. Mirjalili, S. Shahidi, and M. Ghoranneviss, "The Effect of Various Catalyst on In-situ Synthesis of Carbon Nanotubes on the Glass Mat Using Thermal Chemical Vapor Deposition Method," Fib. Polym., Vol. 19, pp. 711-721, 2018. [DOI:10.1007/s12221-018-7829-4]
51. Z. Motaghi and S. Shahidi, "Improvement the Conductivity and Flame Retardant Properties of Carboxylated Single Walled Carbon Nanotube/Cotton Fabrics Using Citric Acid and Sodium Hypophosphite," J. Nat. Fib., Vol. 15, pp. 353-362, 2018. [DOI:10.1080/15440478.2017.1330716]
53. S. Parsian, S. Shahidi, M. Mirjalili, and M. Ghoranneviss, "In situ synthesis of carbon nanotubes on glass mat using thermal chemical vapor deposition method," Fullerenes, Nanotubes Carbon Nanostructures, Vol. 26, pp. 551-556, 2018. [DOI:10.1080/1536383X.2018.1457650]
55. Y Herbani, I. Irmaniar, R.S. Nasution, F. Mujtahid, and S. Masse, "Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production," J. Phys: Conference, Series 985, 2018. [DOI:10.1088/1742-6596/985/1/012005]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb