دوره 17، شماره 1 - ( 10-1401 )                   جلد 17 شماره 1 صفحات 64-57 | برگشت به فهرست نسخه ها

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bolandnazar S, Roshan Entezar S. Propagation of Flat-top Optical Pulses in Defective Photonic Band Gap. IJOP 2023; 17 (1) :57-64
URL: http://ijop.ir/article-1-543-fa.html
Propagation of Flat-top Optical Pulses in Defective Photonic Band Gap. . 1401; 17 (1) :57-64

URL: http://ijop.ir/article-1-543-fa.html


چکیده:   (303 مشاهده)
In this article, we provide a theoretical investigation into the reshaping of flat-top pulses in a one-dimensional, homogeneous, isotropic, finite-size photonic crystal with two defect layers. We use Fourier transform to find frequency and time spectra, and transfer matrix to determine transmission spectra to find the average duration and power of the output pulse. The pulses with a carrier frequency near the defect mode center and a wide frequency spectrum, undergo the most significant reshaping. Reshaping is strongest for narrow pulses with a carrier frequency at defect mode peaks. The maximum power and duration of the output pulse of a spectrally narrow pulse are all proportional to the pulse duration and exhibit extremes at the frequencies of the defect mode peaks. The power and average duration of a spectrally wide pulse's output pulse are not affected by the carrier frequency.
     
نوع مطالعه: پژوهشي | موضوع مقاله: نانوفوتونیک و ساختارهای نانویی
دریافت: 1402/6/19 | ویرایش نهایی: 1402/10/16 | پذیرش: 1402/10/26 | انتشار: 1401/10/28

فهرست منابع
1. A.M. Weiner and A.M. Kanan, "Femtosecond pulse shaping for synthesis, processing, and time-to-space conversion of ultrafast optical waveforms," IEEE J. Select. Topics Quantum Electron., Vol. 4, pp. 317-331, 1998. [DOI:10.1109/2944.686738]
2. A.M. Weiner, "Fourier information optics for the ultrafast time domain," Appl. Opt., Vol. 47, pp. A88-A96, 2008. [DOI:10.1364/AO.47.000A88]
3. D. Goswami, "Optical pulse shaping approaches to coherent control," Phys. Reports, Vol. 374, pp. 385-481, 2003. [DOI:10.1016/S0370-1573(02)00480-5]
4. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, "Femtosecond quantum control of molecular dynamics in the condensed phase," Phys. Chem. Chem. Phys., Vol. 9, pp. 2470-2497, 2007. [DOI:10.1039/b618760a]
5. Y. Silberberg, "Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy," Ann. Rev. Phys. Chemi., Vol. 60, pp. 277-292, 2009. [DOI:10.1146/annurev.physchem.040808.090427]
6. H.M. Asghari and J. Azana, "Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators," Opt. Commun., Vol. 281, pp. 4581 4588, 2008. [DOI:10.1016/j.optcom.2008.05.037]
7. Y.V. Radeonychev, V.A. Polovinkin, and O.Kocharovskaya, "Pulse Shaping via Modulation of Resonant Absorption," Laser Phys., Vol. 19, pp. 769-775, 2009. [DOI:10.1134/S1054660X09040343]
8. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, "Feedback-controlled femtosecond pulse shaping," Appl. Phys., Vol. 70, pp. 119-124, 2000. [DOI:10.1007/s003400000270]
9. S. Adhikary and M. Basu, "Nonlinear pulse reshaping in a typically designed silicon-on-insulator waveguide and its application to generate a high repetition rate pulse train," J. Opt., Vol. 23, pp. 125506(1-12), 2021. [DOI:10.1088/2040-8986/ac34e5]
10. D.E. Leaird and A.M. Weiner, "Femtosecond direct space-to-time pulse shaping," IEEE J. Quantum Electron., Vol. 37, pp. 494-504, 2001. [DOI:10.1109/3.914397]
11. D. E. Leaird, and A.M. Weiner, "Femtosecond direct space-to-time pulse shaping in an integrated-optic configuration," Opt. Lett., Vol. 29, pp. 1551-1553, 2004. [DOI:10.1364/OL.29.001551]
12. A. Vega, D.E. Leaird, and A.M. Weiner, "High-speed direct space-to-time pulse shaping with 1 ns reconfiguration," Opt. Lett., Vol. 35, pp. 1554-1556, 2010. [DOI:10.1364/OL.35.001554]
13. J. Zhao, J. Li, H. Shao, J. Wu, and J. Zhou, "Reshaping ultrashort light pulses in resonant photonic crystals," J. Opt. Soc. Am. B., Vol. 23, pp. 1981-1987, 2006. [DOI:10.1364/JOSAB.23.001981]
14. J. Lumeau, L.B. Glebov, and V. Smirnov, "Tunable narrowband filter based on a combination of Fabry-Perot etalon and volume Bragg grating," Opt. Lett., Vol. 31, pp. 2417 2419, 2006. [DOI:10.1364/OL.31.002417]
15. S.W. Shao, X.S. Chen, W. Lu, M. Li, and H.Q. Wang, "Fractal independently tunable multichannel filters," Appl. Phys. Lett., Vol. 90, pp. 211113(1-3), 2007. [DOI:10.1063/1.2743380]
16. S. John, O. Toader, and K. Busch, Photonic Band Gap Materials: Semiconductors of Light, Encyclopedia of Physical Science and Technology, edited by Robert A. Meyers Academic Press, San Diego, Vol. 12, p. 133, 2002. [DOI:10.1016/B0-12-227410-5/00570-6]
17. E. Yablonovitch, "Photonic crystals: semiconductors of light," Sci. Am. Mag., Vol. 285, pp. 46-51, 54-55, 2001. [DOI:10.1038/scientificamerican1201-46]
18. J.D. Joannopoulos, Photonic crystals: Molding the flow of light, Princeton University Press, 2008.
19. E. Yablonovitch. "Photonic band-gap structures," J. Opt. Soc. Am. B, Vol. 10, pp. 283-295, 1993. [DOI:10.1364/JOSAB.10.000283]
20. J.D. Joannapoulos, S.G. Johnson, J.N. Winn, and R.D. Meude, Photonic crystals: modeling the flow of light, Princeton University Press, USA, 2011. [DOI:10.2307/j.ctvcm4gz9]
21. I.L. Lyubchanskii, N.N. Dadoenkova, M.I. Lyubchanskii, E.A. Shapovalov, and Th. Rasing, "Magnetic photonic crystals," J Phys. D: Appl. Phys., Vol. 36, pp. R277-R287, 2003. [DOI:10.1088/0022-3727/36/18/R01]
22. K. Inoue and K. Ohtaka, Photonic Crystals: Physics, Fabrication and Applications, Springer Science & Business Media, Vol. 94, 2004. [DOI:10.1007/978-3-540-40032-5]
23. C.-J. Wu and Z.H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Prog. Electromag. Research, Vol. 103, pp. 169-164, 2010. [DOI:10.2528/PIER10031706]
24. S.K. Srivastava, M. Upadhyay, S.K. Awasthi, S.P. Ojha, "Tunable Reflection Bands and Defect Modes in One-Dimensional Tilted Photonic Crystal Structure," Opt. Photon. J., Vol. 2, pp. 230-236, 2012. [DOI:10.4236/opj.2012.223035]
25. H.Y. Liu, S. Liang, Q.-F. Dai, L.-J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T. M. Lysak, "Transmission of terahertz wave through one-dimensional photonic crystals containing single and multiple metallic defects," J. Appl. Phys., Vol. 110, pp. 073101, 2011. [DOI:10.1063/1.3642994]
26. E. Yablonovitch, T.J. Gmitter, R.D. Meade, A.M. Rappe, K.D. Brommer, and J.D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett., Vol. 67, pp. 3380-3383, 1991. [DOI:10.1103/PhysRevLett.67.3380]
27. T.-C. King and C.-J. Wu, "Properties of defect modes in one-dimensional symmetric defective photonic crystals," Physica E, Vol. 69, pp. 39 46, 2015. [DOI:10.1016/j.physe.2015.01.020]
28. A.M. Steinberg and R.Y. Chiao, "Subfemtosecond determination of transmission delay times for a dielectric mirror (photonic band gap) as a function of the angle of incidence," Phys. Rev. A, Vol. 51, pp. 3525 3528, 1995. [DOI:10.1103/PhysRevA.51.3525]
29. T. Hattori, N.T. Surumachi, and H. Nakatsuka, "Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals," J. Opt. Soc. Am. B., Vol. 14, pp. 348-355, 1997. [DOI:10.1364/JOSAB.14.000348]
30. M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, and C.M. Bowden, "Thin‐film nonlinear optical diode," Appl. Phys. Lett., Vol. 66, pp. 2324-2326, 1995. [DOI:10.1063/1.113970]
31. H. Winful, "Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox," Phys. Rep., Vol. 436, pp. 1-69, 2006. [DOI:10.1016/j.physrep.2006.09.002]
32. S. Doiron, A. Haché, and H.G. Winful, "Direct space-time observation of pulse tunneling in an electromagnetic band gap," Phys. Rev. A., Vol. 76, pp. 023823(1-6), 2007. [DOI:10.1103/PhysRevA.76.023823]
33. P. Pereyra and H.P. Simanjuntak, "Time evolution of electromagnetic wave packets through superlattices: evidence for superluminal velocities," Phys. Rev. E., Vol. 75, pp. 056604(1-7), 2007. [DOI:10.1103/PhysRevE.75.056604]
34. Yu. F. Nasedkina and D. I. Sementsov, "Gaussian pulse transformation upon reflection from a resonant medium," Opt. Spectrosc., Vol. 104, pp. 591-596, 2008. [DOI:10.1134/S0030400X08040176]
35. I.O. Zolotovski˘ı, R.N. Minvaliev, and D.I. Sementsov, "Parametric interaction and compression of optical pulses in field of high-power pump wave," Opt. Spectrosc., Vol. 109, pp. 584-589, 2010. [DOI:10.1134/S0030400X10100152]
36. M.E. Fermann, V. da Silva, D.A. Smith, Y. Silberberg, and A.M. Weinee, "Shaping of ultrashort optical pulses by using an integrated acousto-optic tunable filter," Opt. Lett., Vol. 18, pp. 1505-1507, 1993. [DOI:10.1364/OL.18.001505]
37. Ch. Spielmann, R. Szipöcs, A. Stingl, and F. Krausz, "Tunneling of optical pulses through photonic band gaps," Phys. Rev. Lett., Vol. 73, pp. 2308-2311, 1994. [DOI:10.1103/PhysRevLett.73.2308]
38. S. Roshan Entezar, "Reshaping of Gaussian light pulses via defective nonlinear one-dimensional photonic crystals," Opt. Laser Technol., Vol. 164, pp. 109508(1-5), 2023. [DOI:10.1016/j.optlastec.2023.109508]
39. YU.S. Dadoenkova, N.N.D Dadoenkova, I.L. Lyubchanskii, and D.I. Sementsov, "Reshaping of Gaussian light pulses transmitted through one-dimensional photonic crystals with two defect layers," Appl. Opt., Vol. 55, pp. 3764 3770, 2016. [DOI:10.1364/AO.55.003764]
40. M. Petrarca, P. Musumeci, M.C. Mattioli, C. Vicario, G. Gatti, A. Ghigo, S. Cialdi, and I. Boscolo, "Production of temporally flat-top UV laser pulses for SPARC photo-injector," International Conference on Charged and Neutral Particles Channeling Phenomena, Vol. 6634, 2006. [DOI:10.1117/12.742108]
41. H. Xiao, C. Huang, J. Xu, and Y. Tang, "Generating ultrashort flat-top optical pulses with a fiber-loop time-lense system," Int. J. Light Electron Opt. (Optik), Vol. 185, pp. 287 293, 2019. [DOI:10.1016/j.ijleo.2019.03.095]
42. E. Palushani, L.K. Oxenlowe, M. Galili, H.C. H. Mulvad, A.T. Clausen, and P. Jeppesen, "Flat-top pulse Generation by the Optical Fourier Transform Technique for Ultrahigh Speed Signal Processing,' IEEE J. Quantum Electron., Vol. 45, pp. 1317-1324, 2009. [DOI:10.1109/JQE.2009.2028586]
43. V. Lozovoy, G. Rasskazov, A. Ryabtsev, and M. Dantus, "Phase-only synthesis of ultrafast stretched square pulses," Opt. Express, Vol. 23, pp. 27105-27112, 2015. [DOI:10.1364/OE.23.027105]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb