دوره 16، شماره 2 - ( 4-1401 )                   جلد 16 شماره 2 صفحات 220-211 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zohrabi R, Namdar A, Ahmadi-Kandjani S, Olyaeefar B. Influence of the Graded Index Cholesteric Liquid Crystal Reflectors on the Luminescent Solar Concentrator Efficiency. IJOP 2022; 16 (2) :211-220
URL: http://ijop.ir/article-1-531-fa.html
Influence of the Graded Index Cholesteric Liquid Crystal Reflectors on the Luminescent Solar Concentrator Efficiency. . 1401; 16 (2) :211-220

URL: http://ijop.ir/article-1-531-fa.html


چکیده:   (920 مشاهده)
This article examines the impact of graded-index reflectors (GIRs) constructed from cholesteric liquid crystals (CLCs) on the modification of escape-cone loss and the improvement of luminescent solar concentrator (LSC) efficiency. GIRs are comprised of a structure in which the refractive index changes gradually with a spatial function. In this study, the LSC is a planar optical waveguide made of Poly (methyl methacrylate) (PMMA) with dimensions of 5×5×0.5 cm³ and contains CH₃NH₃PbBr₃ perovskite material as a fluorophore. Two types of GIRs are employed at the bottom of the LSC: periodic and quasi-periodic GIRs. Periodic reflectors (PRs) have a refractive index matrix that gradually changes with a periodic sinusoidal function, while the refractive index matrix of the quasi-periodic reflectors (QPRs) gradually changes with a chirped sinusoidal function. To analyze the models of the study, Monte-Carlo and Finite-Difference Time-Domain (FDTD) methods were utilized in conjunction with experimental results. The results indicated that the reflection band of a PR exhibited the maximum overlap (lowest escape cone) with the dye emission spectrum when the mirror's reflection band underwent a redshift of 20 nm compared to the dye emission spectrum. On the other hand, the QPR generated a broader reflection band, resulting in complete overlap and higher efficiency. Moreover, GIRs enhanced sunlight absorption in the LSC by reflecting transmitted solar photons through it. The optical efficiency (OE) of the LSC increased by 12% (33%) once a periodic (quasi-periodic) reflector is utilized. Furthermore, GIRs reduced escape cone loss, thereby increasing reabsorption, and subsequently, the system selected a lower optimal concentration to minimize reabsorption losses.
     
نوع مطالعه: پژوهشي | موضوع مقاله: سلول‌های خورشیدی
دریافت: 1402/1/20 | ویرایش نهایی: 1402/3/18 | پذیرش: 1402/3/23 | انتشار: 1402/3/29

فهرست منابع
1. M. Okil, M.S. Salem, T.M. Abdolkader, and A. Shaker, "From crystalline to low-cost silicon-based solar cells: A review," Silicon, Vol. 14, pp. 1-17, 2021. [DOI:10.1007/s12633-021-01032-4]
2. A.V. Rodrigues, D.A.R. de Souza, F.D.R. Garcia, and S.J.L. Ribeiro, "Renewable energy for a green future: Electricity produced from efficient luminescent solar concentrators," Sol. Energy Adv., Vol. 2, pp.100013-100025, 2022. [DOI:10.1016/j.seja.2022.100013]
3. M. Rafiee, S. Chandra, H. Ahmed, and S.J. Mc Cormack, "An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications," Opt. Mater., Vol. 91, pp. 212-227, 2019. [DOI:10.1016/j.optmat.2019.01.007]
4. M.G. Debije, M.P. Van, P.P. Verbunt, M.J. Kastelijn, R.H. van der Blom, D.J. Broer, and C.W. Bastiaansen, "Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors," Appl. Opt., Vol. 49, pp.745-751, 2010. [DOI:10.1364/AO.49.000745]
5. M. Collard, B. Racine, S. Meunier-Della-Gatta, D. Grosso, B. Kerzabi, K. Millard, Y. Lee, A. Shum, O. Haeberlé, and C. Martinez, "Study of a liquid crystal impregnated diffraction grating for active waveguide addressing," In Emerging Liq. Cryst. Technol. XVII, Vol. 12023, pp. 1202302-1202310, 2022. [DOI:10.1117/12.2607475]
6. I. C. Khoo, Liquid crystals, John Wiley & Sons, 2022. [DOI:10.1002/9781119705819]
7. K. Miyagi and Y. Teramoto, "Construction of functional materials in various material forms from cellulosic cholesteric liquid crystals," Nanomater., Vol. 11, pp. 2969-3119, 2021. [DOI:10.3390/nano11112969]
8. M. Belalia, C. Michel Mitov, A. Bourgerette, M. Krallafa, Belhakem, and D. Bormann, "Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure," Phys. Rev. E, Vol. 74, pp. 051704-051712, 2006. [DOI:10.1103/PhysRevE.74.051704]
9. D.C. Zografopoulos, E.E. Kriezis, M. Mitov, and C. Binet, "Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients," Phys. Rev. E, Vol. 73, pp. 061701-061711, 2006. [DOI:10.1103/PhysRevE.73.061701]
10. M. Mitov, "Polymer-cholesteric liquid-crystalline composites with a broad light reflection band," In AIP Conference Proceedings, Vol. 1736, pp. 020004-020010, 2016. [DOI:10.1063/1.4949578]
11. P. Yu, X. Chen, J. Gao, R. Yao, C. Ma, C. Zhang, H. Zhang, and Z. Miao, "Polymer-stabilized cholesteric liquid crystal films with broadband reflection formed by photomask polymerization," Opt. Mater., Vol. 136, pp. 113385-113393, 2023. [DOI:10.1016/j.optmat.2022.113385]
12. E. Bagherzadeh-Khajehmarjan, A. Nikniazi, B. Olyaeefar, S. Ahmadi-Kandjani, and J.M. Nunzi, "Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores," Sol. Energy Mater. Sol. Cells, Vol. 192, pp. 44-51, 2019. [DOI:10.1016/j.solmat.2018.12.009]
13. E. Bagherzadeh-Khajehmarjan, S.M. Shakouri, A. Nikniazi, and S. Ahmadi-Kandjani, "Boosting the efficiency of luminescent solar concentrator devices based on CH3NH3PbBr3 perovskite quantum dots via geometrical parameter engineering and plasmonic coupling," Org. Electron., Vol. 109, pp. 106629-10638, 2022. [DOI:10.1016/j.orgel.2022.106629]
14. S. Mirershadi and S. Ahmadi-Kandjani, "Efficient thin luminescent solar concentrator based on organometal halide perovskite," Dyes Pigm., Vol. 120, pp. 15-21, 2015. [DOI:10.1016/j.dyepig.2015.03.035]
15. Z. Pourali, B. Olyaeefar, S. Ahmadi-Kandjani, and A. Asgari, "Perovskite-coated window glasses as semi-transparent luminescent solar concentrators: an evaluation of different coating methods," J. Photonics Energy, Vol. 11, pp. 027501-027501, 2021. [DOI:10.1117/1.JPE.11.027501]
16. K. Nikolaidou, S. Sarang, C. Hoffman, B. Mendewala, H. Ishihara, J.Q. Lu, B. Ilan, V. Tung, and S. Ghosh, "Hybrid perovskite thin films as highly efficient luminescent solar concentrators," Adv. Opt. Mater., Vol. 4, pp. 2126-2132. 2016. [DOI:10.1002/adom.201600634]
17. H. Zhao, R. Sun, Z. Wang, K. Fu, X. Hu, and Y. Zhang, "Zero‐dimensional perovskite nanocrystals for efficient luminescent solar concentrators," Adv. Funct. Mater., Vol. 29. pp. 1902262-1902270, 2019. [DOI:10.1002/adfm.201902262]
18. H. Zhao, Y. Zhou, D. Benetti, D. Ma, and F. Rosei, "Perovskite quantum dots integrated in large-area luminescent solar concentrators," Nano energy, Vol. 37, pp. 214-223, 2017. [DOI:10.1016/j.nanoen.2017.05.030]
19. Z. Zheng, Y. Zhang, X. Cao, G. Gu, Y. Tian, and X. Zhang, "Modeling and comparison of bulk and thin-film luminescent solar concentrators based on colloidal perovskite quantum dots," Opt. Lett., Vol. 47, pp. 4367-4370, 2022. [DOI:10.1364/OL.467704]
20. D.K. Hwang and A.D. Rey, "Computational modeling of the propagation of light through liquid crystals containing twist disclinations based on the finite-difference time-domain method," Appl. Opt., Vol. 44, pp. 4513-4522, 2005. [DOI:10.1364/AO.44.004513]
21. V. Ilyina, S.J. Cox, and T.J. Sluckin, "FDTD method for light interaction with liquid crystals," Mol. Cryst. Liq. Cryst., Vol. 422, pp. 1-10, 2004. [DOI:10.1080/15421400490501932]
22. J. Shu, X. Zhang, P. Wang, R. Chen, H. Zhang, D. Li, P. Zhang, and J. Xu, "Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots," Physica B, Vol. 548, pp. 53-57, 2018. [DOI:10.1016/j.physb.2018.08.021]
23. A. Mouldi and M. Kanzari, "Design of an omnidirectional mirror using one-dimensional photonic crystal with graded geometric layers thicknesses," Optik, Vol. 123, pp. 125-131, 2012. [DOI:10.1016/j.ijleo.2011.03.010]
24. R. Zohrabi and A., Namdar, "Perfect tunable all-optical diode based on periodic photonic crystal grand graded structures," J. Opt. Commun., Vol. 40, pp. 187-193, 2019. [DOI:10.1515/joc-2017-0080]
25. C. Bosshard, J. Hulliger, M. Florsheimer, and P. Gunter, Organic nonlinear optical materials, CRC Press, 2001.
26. F.V. Ignatovich and V.K. Ignatovich, "Optics of anisotropic media," Phys. Usp., Vol. 55, pp. 709-721, 2012. [DOI:10.3367/UFNe.0182.201207f.0759]
27. T. Irvine, "Sine Sweep Frequency Parameters," 1998.
28. R. Dreher, G. Meier, and A. Saupe, "Selective reflection by cholesteric liquid crystals," Mol. Cryst. Liq. Cryst., Vol. 13, pp. 17-26, 1971. [DOI:10.1080/15421407108083534]
29. D.K. de Boer, D.J. Broer, M.G. Debije, W. Keur, A. Meijerink, C.R. Ronda, and P.P. Verbunt, "Progress in phosphors and filters for luminescent solar concentrators," Opt. Express, Vol. 20, pp. A 395-A405, 2012. [DOI:10.1364/OE.20.00A395]
30. M. Cao, X. Zhao, and X. Gong, "Achieving high-efficiency large-area luminescent solar concentrators," J. Amer. Chem. Soc. Au, Vol. 3, pp. 25-35, 2023. [DOI:10.1021/jacsau.2c00504]
31. W. Demtröder, Laser spectroscopy: Basic concepts and instrumentation, Springer, 1985.
32. G.R. Fowles, Introduction to modern optics, Dover Publications, 1989.
33. L. Novotny and B. Hecht, Principles of nano-optics, Cambridge University Press, 1989.
34. D.J. Broer, J. Lub, and G.N. Mol, "Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient," Nature, Vol. 378, pp. 467-469, 1995. [DOI:10.1038/378467a0]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb