دوره 16، شماره 2 - ( 4-1401 )                   جلد 16 شماره 2 صفحات 170-161 | برگشت به فهرست نسخه ها


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoudi Meimand Z, Hamidi O, Bahrampour A R. A Proposal for Bad-Cavity Optomechanical Ground-State Cooling Via Coupling to a Parity-Time Symmetric Cavity. IJOP 2022; 16 (2) :161-170
URL: http://ijop.ir/article-1-522-fa.html
A Proposal for Bad-Cavity Optomechanical Ground-State Cooling Via Coupling to a Parity-Time Symmetric Cavity. . 1401; 16 (2) :161-170

URL: http://ijop.ir/article-1-522-fa.html


چکیده:   (976 مشاهده)
In This paper a ground-state cooling method for bad optomechanical systems is proposed. Previous authors show that an optical cavity with equal loss and gain has a parity-time reversal (PT) symmetry. We introduced an optomechanical cavity coupled to the two modes of a PT symmetry and a passive optical cavity. A quarter-wave plate provides linear mixing interaction between the PT symmetry and passive cavities. In this study, our proposed system improved the cooling rate by utilizing two effects: energy localization and quantum interference. These two impacts increase the cooling rate while the system is red or blue-detuned. It is demonstrated that optomechanical cooling occurs in both the bad-cavity limit and the weak optomechanical coupling regime. These innovations can be attained by parameter management of the system.
     
نوع مطالعه: پژوهشي | موضوع مقاله: اپتیک کوانتمی، مخابرات کوانتمی و کامپیوترهای اپتیکی
دریافت: 1401/11/16 | ویرایش نهایی: 1402/1/12 | پذیرش: 1402/1/15 | انتشار: 1402/3/29

فهرست منابع
1. T.J. Kippenberg and K.J. Vahala, "Cavity optomechanics: back-action at the mesoscale," Science, Vol. 321, PP. 1172-1176. 2008. [DOI:10.1126/science.1156032]
2. P. Meystre, "A short walk through quantum optomechanics," Annalen der Physik, Vol. 525, pp. 215-233, 2013. [DOI:10.1002/andp.201200226]
3. I. Favero and F. Marquardt, "Focus on optomechanics," New J. Phys., Vol. 16, pp. 085006 (1-8), 2014. [DOI:10.1088/1367-2630/16/8/085006]
4. F.Y. Khalili and S.L Danilishin, "Quantum opto mechanics," Prog. Opt., Vol. 61, pp. 113-236. 2016. [DOI:10.1016/bs.po.2015.09.001]
5. W.P. Bowen and G.J. Milburn, Quantum opt mechanics, CRC Press, 2015.
6. F. Marquardt, A.A. Clerk, and S.M Girvin, "Quantum theory of optomechanical cooling," J. Mod. Opt., Vol. 55, PP. 3329 -3338, 2008. [DOI:10.1080/09500340802454971]
7. Y.C. Liu, Y.W. Hu, C.W. Wong, and Y.F. Xiao, "Review of cavity optomechanical cooling," Chin. Phys. B, Vol. 22, PP. 114213 (1-32), 2013. [DOI:10.1088/1674-1056/22/11/114213]
8. Y.C. Liu, R.S. Liu, C.H. Dong, Y. Li, Q. Gong, and Y.F. Xiao, "Cooling mechanical resonators to the quantum ground state from room temperature," Phys. Rev. A, Vol. 91, PP.013824 (1-6), 2015. [DOI:10.1103/PhysRevA.91.013824]
9. H.K. Lau and A.A. Clerk, "Ground-state cooling and high-fidelity quantum transduction via parametrically driven bad-cavity optomechanics," Phys. Rev. Lett., Vol. 124, PP. 103602 (1-7). 2020. [DOI:10.1103/PhysRevLett.124.103602]
10. F. Farman and A.R. Bahrampour, "Heat transfer between micro-and nano-mechanical systems through optical channels," J. Opt. Soc. Am. B, Vol. 31, PP. 1525-1532, 2014. [DOI:10.1364/JOSAB.31.001525]
11. F. Marquardt, J.P. Chen, A.A. Clerk, and S.M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett, Vol. 99, PP. 093902 (1-5), 2007. [DOI:10.1103/PhysRevLett.99.093902]
12. R. Riviere, S. Deleglise, S. Weis, E. Gavartin, O. Arcizet, A. Schliesser, and T.J. Kippenberg, "Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state," Phys. Rev. A, Vol. 83, PP. 063835 (1-12), 2011. [DOI:10.1103/PhysRevA.83.063835]
13. Y.C. Liu, Y.F. Xiao, X. Luan, and C.W. Wong, "Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics," Phys. Rev Lett., Vol. 110, PP. 153606 (1-6), 2013. [DOI:10.1103/PhysRevLett.110.153606]
14. J. S. Bennett, L.S. Madsen, M. Baker, H. Rubinsztein-Dunlop, and Warwick P Bowen, "Coherent control and feedback cooling in a remotely coupled hybrid atom-optomechanical system," New J. Phys., Vol. 16, PP. 083036 (1-27), 2014. [DOI:10.1088/1367-2630/16/8/083036]
15. Y.C. Liu, Y.F. Xiao, X. Luan, and C.W. Wong, "Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state," Science China Phys., Mech. Astron., Vol. 58, PP. 1-6, 2015. [DOI:10.1007/s11433-014-5635-6]
16. W.J. Gu and G.X. Li, "Quantum interference effects on ground-state optomechanical cooling," Phys. Rev. A, Vol. 87, PP. 025804 (1-6), 2013. [DOI:10.1103/PhysRevA.87.025804]
17. C. Chen, L. Jin, and R.B. Liu, "Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system," New J. Phys, Vol. 21, PP. 083002 (1-16), 2019. [DOI:10.1088/1367-2630/ab32ab]
18. Z.X. Yang, L. Wang, Y.M. Liu, D.Y. Wang, C.H. Bai, S. Zhang, and H.-F. Wang, "Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature," Frontiers Phys., Vol. 15, PP. 1-10, 2020. [DOI:10.1007/s11467-020-0996-y]
19. H. Jing, S.K. Özdemir, X.Y. Lü, J. Zhang, L. Yang, and F. Nori, "PT-symmetric phonon laser," Phys. Rev. Lett., Vol. 113, PP. 053604 (1-8). 2014. [DOI:10.1103/PhysRevLett.113.053604]
20. X.Y. Lü, H. Jing, J.Y. Ma, and Y. Wu, "P T-symmetry-breaking chaos in optomechanics," Phys. Rev. Lett., Vol. 114, PP. 253601 (1-5), 2015.
21. X. Bian, Y. Zhang, Z. Zhai, H. Yu, F. Zuo, G. Chen, and C. Jiang, "Enhanced four-wave mixing in P T-symmetric optomechanical systems," Opt. Express, Vol. 28, PP. 9049-9061, 2020. [DOI:10.1364/OE.387712]
22. Y.L. Liu and Y.X. Liu, "Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity," Phys. Rev. A, Vol. 96, PP. 023812 (1-15), 2017. [DOI:10.1103/PhysRevA.96.023812]
23. H. Xu, L. Jiang, A.A Clerk, and J. Harris, "Nonreciprocal control and cooling of phonon modes in an optomechanical system," Nature, Vol. 568, PP. 65-69, 2019. [DOI:10.1038/s41586-019-1061-2]
24. B. Peng, Ş.K. Özdemir, S. Rotter, H.Yilmaz, M. Liertzer, F. Monifi., C.M. Bender, F. Nori, and L. Yang, "Loss-induced suppression and revival of lasing," Science, Vol. 568, PP. 328-332, 2014. [DOI:10.1126/science.1258004]
25. B. Peng, Ş.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan., F. Nori, C.M. Bender, and L. Yang, "Parity-time-symmetric whispering-gallery microcavities," Nat. Phys., Vol. 10, PP. 394-398, 2014. [DOI:10.1038/nphys2927]
26. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao "Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators," Nat. Photon., Vol. 8, PP. 524-529, 2014. [DOI:10.1038/nphoton.2014.133]
27. J. Zhang, B. Peng, S.K. Özdemir, Y.X. Liu, H. Jing, X.Y. Lü, Y.L. Liu, L. Yang, and F. Nori, "Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes," Phys. Rev. B, Vol. 92, PP. 115407 (1-16), 2015. [DOI:10.1103/PhysRevB.92.115407]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb