Search published articles


Showing 2 results for Absorption Spectroscopy

Mr Patrick Enenche, Dr Michael David, Dr Caroline Alenoghena, Mr Supreme Okoh,
Volume 15, Issue 2 (7-2021)
Abstract

The value of ozone absorption cross section (OACS) is a key parameter used in the configuration of gas sensors. Sadly, the variations of certain parameters among others such as temperature, pressure, and optical path-length in a given spectrum can affect the values of OACS. As a result, there have been several discrepancies in the value of OACS. Recently, the simultaneous effects of optical path-length were investigated in the visible spectrum. Hence, there is the need to also carry out the same investigation in the UV spectrum.  So, in this paper, we have reported the combined variation effects of temperature (100 K–350 K), and optical path-length (0.75 cm–130 cm) on OACS in the UV spectrum. We used the method of optical absorption spectroscopy as deployed in a model software called Spectralcalc. The software comprising the HITRAN12 latest line list was used to simulate OACS values. Simulated results were obtained using the latest available line list on the HITRAN12 Spectralcalc simulator. Our obtained results were slightly different from those reported for the visible spectrum but followed a similar trend, in that it showed a decrease in the OACS with an increase in the temperature from 100 K to 350 K at 279.95 nm and 257.34 nm by 1.09 % and 1.43 % respectively. While optical path-length had zero effect on it. We, therefore, conclude that at constant pressure, OACS depends on both temperature and absorption wavelength but not on optical path-length. The analysis reported in this work only seeks to address the differences in the OACS relative to temperature in the UV spectrum. So, the results obtained in this paper can be used to optimally configure ozone gas sensors to obtain an accurate measurement.
Zahra Heydarinasab, Mohammad Karami, Farrokh Sarreshtedari,
Volume 17, Issue 1 (1-2023)
Abstract

Sub-Doppler dichroic atomic vapor laser lock (DAVLL) is a modulation-free laser stabilization method that combines DAVLL and saturated absorption spectroscopy (SAS). The performance of this highly sensitive stabilization technique strongly depends on the characteristics of the generated error signal. The slope of the error signal determines the lock sensitivity or how fast the frequency compensation could be made in the feedback loop, and the amplitude of the error signal determines the lock stability or how much noise the feedback loop can tolerate before laser unlocking. We have analytically modeled the error signal of the sub-Doppler DAVLL considering all possible transitions between Zeeman sublevels and compared it with the experimental results. Using the analytical and experimental results, it is shown that the values of the required magnetic fields for maximizing the slope and amplitude of the error signal are close to each other. Selecting the mentioned values of the magnetic field for optimization of the sub-Doppler DAVLL error signal is highly useful for sensitive and stable laser locking.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb