Hojjat Amrollahi Bioki, Mahmood Borhani Zarandi,
Volume 5, Issue 2 (7-2011)
Abstract
Zinc Sulfide (ZnS) thin films were deposited on glass substrates at the pressure of 10-6 mbar by thermal resistor evaporation technique. The effects of annealing on the structural, optical properties of ZnS films were studied. Crystalline ZnS films have been analyzed by X-ray diffraction. Only cubic phase with the preferred (111) plane was found in ZnS films. Optical characteristics were studied as a function of annealing temperature and thickness in air. The results show that the energy band gap was found to be about 3.5 eV. It was observed that the energy gap decreases with the increase in the film thickness and increases with the increase in the annealing temperature.
Maral Ghoshani, Abbas Behjat, Fatemeh Jafari, Naimeh Torabi,
Volume 7, Issue 1 (6-2013)
Abstract
In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by MgF2/ZnS and YF3/ZnS nano-structures show a highly efficient gas diffusion barrier that results in a longer lifetime of the devices. The half lifetime of the green OLEDs reached 1200 minutes using YF3/ZnS layers. The electroluminescence (EL) and current-voltage characteristics of the devices were also examined to compare the electrical and the emissivity properties of the devices before and after encapsulation. This simple and inexpensive thin-film encapsulation method would be potentially employed to capsulate top emitting OLEDs and flexible OLEDs due to their good performance and easy fabrication.