Showing 5 results for Refraction
Faramarz E. Seraji, F. Asghari,
Volume 3, Issue 1 (3-2009)
Abstract
In this paper, we present a comparative numerical analysis to determine the refractive index of photonic crystal fibers (PCFs) by using FDFD method and used the results to evaluate the confinement losses of PCFs by considering the effects of air-hole rings in the cladding.
It is shown that by increasing the wavelength, the imaginary part of refraction index rises, resulting in increase of confinement losses nearly by order of 10. In lower wavelengths over the range of 0.2 to 1 μm, these losses were shown to be negligible. The obtained results show that as the number of air-hole ring in the cladding increases, the confinement losses over wavelengths would reduce. To show the effect of air-hole rings on confinement losses in PCFs, the FDFD method yielded accurate results that agree well with results of FEM method and source–model technique reported by others.
S Roshan Entezar,
Volume 4, Issue 1 (1-2010)
Abstract
The refraction phenomenon at the interface of an ordinary material and a lossy metamaterial has been investigated. For oblique incidence on the lossy metamaterial, the planes of constant amplitude of the refracted wave are parallel to the interface and the plane of constant phases make a real angle with the interface (real refraction angle). The real refraction angle and hence, the real refraction index corresponds to the real refraction angle which satisfies the real version of Snell's law are negative in two different regimes. In one regime, the metamaterial is double-negative, while in the other one it is single-negative. Moreover, we show that the plane wave solution for the refracted wave is causal in both double-negative and single-negative regimes
A. Gaur, D. Sharma, P. Gaur, B.p. Malik, N. Singh,
Volume 4, Issue 2 (6-2010)
Abstract
The Photoexcited carrier lifetime (τ) and peak to valley transmission difference (ΔTp-v) in direct and indirect band gap crystals has been investigated by the use of single beam open and closed aperture z-scan technique using frequency doubled Nd:YAG laser. The peak to valley transmission difference (ΔTp-v) is found to be of the order of 10-2 in case of direct band gap crystals and of the order of 10-3 in case of indirect band gap crystals. The carrier life time (τ) is found to be in nanoseconds range in case of direct band gap crystals and picoseconds range in case of indirect band gap crystals. Lower value of (τ) and (ΔTp-v) in case of indirect band gap crystals can be attributed to the reduction in the value of carrier density (N) and small value of nonlinear phase shift ( Δϕ ),respectively.
Mina Eslamifar, Nastaran Mansour,
Volume 6, Issue 1 (10-2012)
Abstract
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical properties of gold nanoparticles colloids are investigated by closed Z-scan under irradiation of a low power CW laser. It will be shown that the thermal lens model is in excellent agreement with the experimental results of samples. The aperture-limitted optical limiters based on the nonlinear refraction of colloidal solution are presented. The tunability of limiting threshold of optical limiters can be accomplished by engineering of the experimental geometry.
Dr Vahid Ahmadi, Mr Saeed Pahlavan,
Volume 10, Issue 1 (4-2016)
Abstract
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-case (RSC) photonic crystals. The RSC crystal is then converted to more common structures like pillar crystals by matching Fourier coefficients of periodic electric permittivity. Methods to design common crystals which have approximately equal Fourier components to the RSC crystal are also discussed. The proposed procedure can be used to design metamaterials without the difficulties of large trial and error. The devised procedure can also be applied in designing other structures involving photonic crystals.