Search published articles


Showing 12 results for Absorption

K. Moravvej-Farshi, E. Darabi, V. Ahmadi, K. Abedi,
Volume 2, Issue 1 (2-2008)
Abstract

Larger width of P-cladding layer in p-i-n waveguide of traveling wave electroabsorption modulator (TWEAM) results in lower resistance and microwave propagation loss which provides an enhanced high speed electro-optical response. In this paper, a fullvectorial finite-difference-based optical mode solver is presented to analyze mushroom-type TWEAM for the first time. In this analysis, the discontinuities of the normal components of the electric field across abrupt dielectric interfaces which are known as the limitations of scalar and semivectorial approximation methods are considered. The optical field distributions in mushroom-type TWEAM and conventional ridge-type TWEAM of the same active region for 1.55 μm operation are presented. The important parameters in the high-frequency TWEAM design such as optical effective index which defines optical velocity and transverse mode confinement factor are calculated. The modulation response of mushroom-type TWEAM is calculated by considering interaction of microwave and optical fields in waveguide and compared to that of conventional ridge-type TWEAM. The calculated 3dB bandwidths for ridge-type and mushroom-type TWEAM are about 139 GHz and 166 GHz for 200 μm and 114 GHz and 126 GHz for 300 μm waveguide length, respectively.
H. Aminpour, A. Hojabri, M. Esmaeili, I. Mashaiekhy Asl2,
Volume 5, Issue 1 (1-2011)
Abstract

In this article, we present a specific shape of disk laser which is side-pumped by four non-symmetric hollow- ducts. The use of non-symmetric hollow duct based on two goals of the uniformity of the pump light distribution profile and the homogeneity of pump light profile through the disk. First of all we simulated the pump light distribution in the disk by using Monte-Carlo ray tracing method. Then, by using finite element analysis (FEA) method, we calculated the absorbed pump light distribution through the disk for 12%, 14% and 20% concentration of Yb+3 ions. Finally, the results of calculation have been presented.
Mrs. Hajar Ghanbari, Dr. Rasoul Sarraf-Mamoory, Prof. Jamshid Sabbagh Zadeh, Mr. Ali Chehrghani, Dr. Rasoul Malekfar,
Volume 7, Issue 2 (8-2013)
Abstract

In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures in benzene, spiral integrated forms in toluene, organic integrated networks in hexane, and nanoparticles in ethanol were formed. In n-methyl-2-pyrrolidone (NMP), sheets and bulk deformed structures were seen. Also, in Dimethylacetamide, particles in different stages of growth could be detected. The nonlinear optical absorption (NLA) behaviors of the products were investigated by exposing them to a 532 nm nanosecond laser using the Z-scan technique. The saturated NLA coefficient, obtained from structures of NMP and hexane-based synthesized samples, are 1.1×10-8 and 2.4×10-8 cm W-1, respectively. The saturable absorption responses of these samples were switched to the reverse saturable absorption responses in the other synthesis mediums. The maximum nonlinear absorption coefficient of 10.2×10-8 cm W 1 was measured for spiral integrated superstructures, produced in the toluene medium.
Ms. Fateme Salehi-Marzijani, Dr. Seyede Zahra Shoursheini, Dr. Hamidreza Shirvani-Mahdavi, Ms. Somayye Pashaei,
Volume 8, Issue 1 (1-2014)
Abstract

The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities of other lines of the element are calculated through their self-absorbed intensities in terms of the reference intensity. The plasma temperature is again computed by line pair ratio method. This procedure is carried out by an iterative algorithm until the self-absorption coefficient of selected lines converges on one. In the last step, the corrected temperature is evaluated by the Boltzmann plot drawn using true (non self-absorbed) line intensities of each element. The concentration of the elements is finally determined by the corrected temperature and intensities. The results indicate that the accuracy of this method in determining the concentrations is significantly better than the normal way.
Siamak Khademi, Samira Alipour,
Volume 11, Issue 1 (1-2017)
Abstract

The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trapped four-levels inverted Y type atoms, interacting with a probe beam of photons as well as two-mode trapped coupling photons. It is shown that the measurement of the maximum of absorption of the probe field and its detuning gives us simply the number of two-mode coupling photons, individually. An experimental setup for this non-demolition photon counting method is proposed and the numbers of coupling photons are obtained analytically.


Mandana Jalali, Hamid Nadgaran, Daniel Erni,
Volume 11, Issue 2 (8-2017)
Abstract

In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer with effective refractive index amid the two layers is formed and a graded refractive index AR coating is achieved, which has a substantial effect on broad, omnidirectional reduction of the reflection spectra. To validate our claim, the proposed structure as well as four conventional AR coatings are simulated and through the numerical analysis of both the spectral response of the reflection factor and the silicon active layer absorption spectra, it is shown that the proposed design outperforms conventional already existing AR coatings, and in addition provides a strong coupling of the incident light to the active layer, while improving the overall efficiency of the thin-film solar cell.


Seyed Hassan Nabavi, Mohammad Hassan Khodabandeh, Maryam Golbabaee, Ahmad Moshaii,
Volume 12, Issue 1 (1-2018)
Abstract

Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented in an effort to rationalize our experimental results. Theoretical results have been obtained with a polarizable continuum model time-dependent density functional theory (PCM-TD-DFT) approach. At first, a vast functional benchmark has been performed to determine a suitable approach for determination of electronic structure and UV-Vis. absorption spectrum of DCM. In a second step, we evaluated the impact of the atomic basis set on the electronic transition energies using a large panel of Pople’s basis sets ,up to the 6-31+G(3df,2p) and also a correlation consistent basis set, cc-pVTZ. It turns out that the selected basis set has a relatively finite influence on the calculated electronic transition energies as well as the topology of the absorption shape, but both are significantly affected by the chosen functional. In the present case, no single functional simultaneously provides highly accurate positions and intensities of the different bands, but mPW1PBE and mPW1LYP appear to be a good compromise. The mPW1PBE along with medium basis sets produced both absorption bands with maximum peaks about 463 and 346 nm. At all stages, ethanol has been chosen as a solvent environment. To improve the accuracy of first electronic excitation, a complete analysis of the origin of the band shape using TD-DFT vibrational couplings was performed. Finally the computed transition energy was corrected to 472 nm which was in excellent agreement with experiments.


Mohammad Javad Azarm, Alireza Keshavarz, Gholamreza Honarasa,
Volume 15, Issue 1 (1-2021)
Abstract

The absorption cross-section of gold and silver nanoparticles has been demonstrated in confined wavelength spectra based on Mie's theory. For this purpose, the numerical study performed with COMSOL for defined particle size to clarify absorption spectra and final results have been compared with experimental data to express the absorption peak occurs in higher wavelength for large particle size which is in around 530 nanometers for gold and 400 nanometer for silver particles.  These results show that particle size affects directly on absorption spectra of metallic nanoparticles.
Parisa Khajegi, Majid Rashidi-Huyeh,
Volume 15, Issue 1 (1-2021)
Abstract

Nobel metal nanoparticles (NPs) are widely used in various applications including optical and biological sensors, biomedicine, photocatalysts, electronics, and photovoltaic cells. The optical properties of gold NPs are surveyed in this paper under the Localized Surface Plasmon Resonance (LSPR) effect, which increases the light absorption and scattering at the LSPR wavelength. This LSPR frequency depends on various factors, including the shape and size of the particles as well as incident electromagnetic polarization. Here, the optical response of gold NPs with different shapes and sizes are investigated using the finite element method (FEM). The results show that the bandwidth, amplitude, and LSPR wavelength depend on the shape and dimensions of the NPs as well as the polarization of the incident light. The LSPR wavelength changes from 500 to 650 nm for different shapes of the gold NPs including sphere, octahedral, cube, ellipsoid, triangle, and with identical volume. To study the NP size effect on the optical properties, the absorption and scattering cross-sections (CSs) are also investigated for different sizes of NPs. The results show a redshift in the LSPR wavelength by increasing the NP size.
Mr Saeed Ranjbar, Dr. Abbas Azarian,
Volume 15, Issue 2 (7-2021)
Abstract

In this article, the optical properties of silver cubic-shape nanostructures (SCNs) were analyzed by employing the discrete dipole approximation (DDA) in aqueous media. The absorption, dispersion and extinction cross-sections of these nanostructures were calculated based on the wavelength change of the incident light in the visible and near infrared region. Moreover, the height change, wavelength and full width at half maximum (FWHM) of extinction cross-section peaks (from plasmon resonances) based on the size of nanoparticles and the environment dielectric constant were surveyed. The results showed that only two peak modes, named dipole peak and quadrupole peak, exist in this spectrum, such as spherical particles.
Mr Patrick Enenche, Dr Michael David, Dr Caroline Alenoghena, Mr Supreme Okoh,
Volume 15, Issue 2 (7-2021)
Abstract

The value of ozone absorption cross section (OACS) is a key parameter used in the configuration of gas sensors. Sadly, the variations of certain parameters among others such as temperature, pressure, and optical path-length in a given spectrum can affect the values of OACS. As a result, there have been several discrepancies in the value of OACS. Recently, the simultaneous effects of optical path-length were investigated in the visible spectrum. Hence, there is the need to also carry out the same investigation in the UV spectrum.  So, in this paper, we have reported the combined variation effects of temperature (100 K–350 K), and optical path-length (0.75 cm–130 cm) on OACS in the UV spectrum. We used the method of optical absorption spectroscopy as deployed in a model software called Spectralcalc. The software comprising the HITRAN12 latest line list was used to simulate OACS values. Simulated results were obtained using the latest available line list on the HITRAN12 Spectralcalc simulator. Our obtained results were slightly different from those reported for the visible spectrum but followed a similar trend, in that it showed a decrease in the OACS with an increase in the temperature from 100 K to 350 K at 279.95 nm and 257.34 nm by 1.09 % and 1.43 % respectively. While optical path-length had zero effect on it. We, therefore, conclude that at constant pressure, OACS depends on both temperature and absorption wavelength but not on optical path-length. The analysis reported in this work only seeks to address the differences in the OACS relative to temperature in the UV spectrum. So, the results obtained in this paper can be used to optimally configure ozone gas sensors to obtain an accurate measurement.
Zahra Heydarinasab, Mohammad Karami, Farrokh Sarreshtedari,
Volume 17, Issue 1 (1-2023)
Abstract

Sub-Doppler dichroic atomic vapor laser lock (DAVLL) is a modulation-free laser stabilization method that combines DAVLL and saturated absorption spectroscopy (SAS). The performance of this highly sensitive stabilization technique strongly depends on the characteristics of the generated error signal. The slope of the error signal determines the lock sensitivity or how fast the frequency compensation could be made in the feedback loop, and the amplitude of the error signal determines the lock stability or how much noise the feedback loop can tolerate before laser unlocking. We have analytically modeled the error signal of the sub-Doppler DAVLL considering all possible transitions between Zeeman sublevels and compared it with the experimental results. Using the analytical and experimental results, it is shown that the values of the required magnetic fields for maximizing the slope and amplitude of the error signal are close to each other. Selecting the mentioned values of the magnetic field for optimization of the sub-Doppler DAVLL error signal is highly useful for sensitive and stable laser locking.
 

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb