Showing 4 results for Uv
Dr. Mohammad Hossein Hekmatshoar, Ms. Samira Vafaei,
Volume 10, Issue 2 (11-2016)
Abstract
Glassy samples with a composition of 40P2O5–30V2O5–(30-x)Li2O– xK2O, 0<x<30 (mol %) were prepared by the conventional melt quenching technique in two forms of bulk and blown film. X-ray diffraction patterns corroborated the amorphous feature of the samples. Density of samples was investigated by using Archimedes principle. Based on absorption and reflection spectra, indirect allowed optical gaps, Urbach energies, refractive index and dielectric coefficients were calculated. Study of FTIR spectra revealed that all of the samples mainly contain metaphosphate and pyrophosphate units. Glass transition temperatures were also evaluated using DSC curves. Non-linear variation of many physical properties by gradually substitution of Li ions with K, confirmed the existence of mixed alkali effect in glassy system.
Ahmadzia Sherzad, Hakimeh Zare, Zahra Shahedi, Fatemeh Ostovari, Yousef Fazaeli, Zeinab Pourghobadi,
Volume 14, Issue 2 (12-2020)
Abstract
Luminescent graphene oxide quantum dots (GOQDs) have attracted tremendous attention from scientists in chemistry, materials, biology, and physics science. They have specific properties such as low cytotoxicity, excellent electrochemical and optical properties, resistance to photo-bleaching, and good stability. In this study, GOQDs were synthesized using a simple and straightforward methodology. The synthesized GOQDs were characterized by Fourier Transform Infrared (FTIR) analyzer, ultraviolet–visible spectrophotometry (UV–VIS) absorption, Photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM) analyses. Then, optical properties of GOQDs such as absorption and luminescence with various pH values were investigated. GOQDs show absorption in the ultraviolet (UV) region and their position of photoluminescence peak is independent of pH value. The average size of QDs is less than 5 nm, as revealed by TEM. The GOQDs show green luminescence under UV irradiation (360 nm).
Maryam Hatefi, Farrokh Sarreshtedari, Mahmood Sabooni,
Volume 14, Issue 2 (12-2020)
Abstract
An approximate numerical method is proposed and discussed for solving the evolution of the spin density operator when the quantum system has an interaction with an external electromagnetic field. In this method by separating the relaxation and field interaction processes at small steps, instead of solving the conventional Liouville-von Neumann or Bloch differential equations, the time evolution of the density operator is efficiently obtained by a two-stage numerical algorithm. Here we have compared the results of this approach with Bloch equation results for a two-level quantum system. The proposed approach has potential applications in calculation of the time evolution for different atomic system including nuclear or electron spin resonance systems.
Mr Patrick Enenche, Dr Michael David, Dr Caroline Alenoghena, Mr Supreme Okoh,
Volume 15, Issue 2 (7-2021)
Abstract
The value of ozone absorption cross section (OACS) is a key parameter used in the configuration of gas sensors. Sadly, the variations of certain parameters among others such as temperature, pressure, and optical path-length in a given spectrum can affect the values of OACS. As a result, there have been several discrepancies in the value of OACS. Recently, the simultaneous effects of optical path-length were investigated in the visible spectrum. Hence, there is the need to also carry out the same investigation in the UV spectrum. So, in this paper, we have reported the combined variation effects of temperature (100 K–350 K), and optical path-length (0.75 cm–130 cm) on OACS in the UV spectrum. We used the method of optical absorption spectroscopy as deployed in a model software called Spectralcalc. The software comprising the HITRAN12 latest line list was used to simulate OACS values. Simulated results were obtained using the latest available line list on the HITRAN12 Spectralcalc simulator. Our obtained results were slightly different from those reported for the visible spectrum but followed a similar trend, in that it showed a decrease in the OACS with an increase in the temperature from 100 K to 350 K at 279.95 nm and 257.34 nm by 1.09 % and 1.43 % respectively. While optical path-length had zero effect on it. We, therefore, conclude that at constant pressure, OACS depends on both temperature and absorption wavelength but not on optical path-length. The analysis reported in this work only seeks to address the differences in the OACS relative to temperature in the UV spectrum. So, the results obtained in this paper can be used to optimally configure ozone gas sensors to obtain an accurate measurement.