Showing 10 results for Temperature
A. Asgari, S. Razi, F. Ghasemi,
Volume 4, Issue 2 (6-2010)
Abstract
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which decline high temperature performance of these devices. Temperature dependent behavior of the responsivity and dark current were presented and discussed for different applied electric fields. Specific detectivity used as figure of merit, and its peak was calculated in different temperatures. This paper indicates the state of the art in the use of the novel III-N materials in infrared detectors, with their special properties such as spontaneous and piezoelectric polarizations. It was found that, III- nitride Quantum dots have a good potential to depress the thermal effects in the dark current which yields the specific detectivity up to~ 2107 CmHz 1/ 2/W at room temperature.
Ms. Fateme Salehi-Marzijani, Dr. Seyede Zahra Shoursheini, Dr. Hamidreza Shirvani-Mahdavi, Ms. Somayye Pashaei,
Volume 8, Issue 1 (1-2014)
Abstract
The identification and concentration of heavy metals, which may be so harmful for the body, is determined by the method of calibration-free laser-induced breakdown spectroscopy using a special strategy. First, the plasma temperature is obtained using the Boltzmann plot. Then, a line with an inappreciable self-absorption is considered for each element as the reference. The modified intensities of other lines of the element are calculated through their self-absorbed intensities in terms of the reference intensity. The plasma temperature is again computed by line pair ratio method. This procedure is carried out by an iterative algorithm until the self-absorption coefficient of selected lines converges on one. In the last step, the corrected temperature is evaluated by the Boltzmann plot drawn using true (non self-absorbed) line intensities of each element. The concentration of the elements is finally determined by the corrected temperature and intensities. The results indicate that the accuracy of this method in determining the concentrations is significantly better than the normal way.
Zahra Danesh Kaftroudi, Esfandiar Rajaei,
Volume 11, Issue 1 (1-2017)
Abstract
In this study, we have theoretically investigated the effect of electron stopper layer on internal temperature distribution of high performance vertical cavity surface-emitting laser emitting at 1305 nm. Simulation software PICS3D, which self-consistently combines the 3D simulation of carrier transport, self-heating, gain computation and wave-guiding, was used. Simulation results show that change the electron stopper layer properties affect the internal temperature distribution of the device. The temperature of the active region increases compared with the original device. Comparison of temperature distribution in devices with different electron stopper layer confirms that optimized structure operates at maximum temperature.
Dr Mehdi Hosseini, Dr Farrokh Sarreshtedari,
Volume 11, Issue 1 (1-2017)
Abstract
Considering a temperature dependent two-level quantum system, we have numerically solved the Landau-Zener transition problem. The method includes the incorporation of temperature effect as a thermal noise added Schrödinger equation for the construction of the Hamiltonian. Here, the obtained results which describe the changes in the system including the quantum states and the transition probabilities are investigated and discussed. The results successfully describe the behavior of the transition probabilities by sweeping the temperature.
Samaneh Biabani, Gholamreza Foroutan,
Volume 13, Issue 2 (12-2019)
Abstract
The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , dissociation via quenching of metastable states of , as well as, quenching by nitrogen molecules. Among the electronically excited metastable states, are the most important species. Slow heating of the gas above 1 is attributed to the vibrational relaxation processes of , among them vibrational-translational relaxation of demonstrates the highest heating rate. The heating rate and thus the gas temperature are significantly increased with increasing of the microwave pulse amplitude, pulse width, and the gas pressure. In all cases, enhanced dissociation is the main factor behind the enhanced gas heating. The same effects are observed for increasing of the initial gas temperature, and percentage in a mixture.
Dr. Morteza Janfaza, Dr. Hamed Moradi, Mr. Morteza Maleki,
Volume 15, Issue 2 (7-2021)
Abstract
Graphene and molybdenum disulfide (MoS2), as two of the most attractive two-dimensional (2D) materials, are used to improve the temperature and strain sensing responses of the few-mode fibers (FMFs). The temperature and strain effects are detected based on distributed optical fiber sensors equations, where the Brillouin scattering (BS) is investigated for the FMF tapered region. For this purpose, the 2D materials were assumed as cover layers on the tapered FMF to enhance its sensitivity. Graphene and MoS2 are used as the cover layer on the FMF cladding at a distance of 10 μm from the core, and the impact of the number of material layers is investigated. By increasing the graphene layers, the temperature and strain sensitivities increase (3% and 16%, respectively) due to the rise of the inter-modal interference of the FMF. Moreover, the increasing of the MoS2 layer number improves the temperature sensitivity by 28% but shows a lower impact on strain sensitivity (about 13%). The advantage of MoS2 with respect to graphene originates from the imaginary part of the refractive index of graphene (assumed with chemical potential of 0.4 eV at the working wavelength of 1550 nm), which leads to a lower effective index of the tapered region, hence lower sensitivities. This sensitivity enhancement can improve the performance of the BS-based sensors for local detection of the parameters under-investigation in multi-parameter sensors.
Mr Patrick Enenche, Dr Michael David, Dr Caroline Alenoghena, Mr Supreme Okoh,
Volume 15, Issue 2 (7-2021)
Abstract
The value of ozone absorption cross section (OACS) is a key parameter used in the configuration of gas sensors. Sadly, the variations of certain parameters among others such as temperature, pressure, and optical path-length in a given spectrum can affect the values of OACS. As a result, there have been several discrepancies in the value of OACS. Recently, the simultaneous effects of optical path-length were investigated in the visible spectrum. Hence, there is the need to also carry out the same investigation in the UV spectrum. So, in this paper, we have reported the combined variation effects of temperature (100 K–350 K), and optical path-length (0.75 cm–130 cm) on OACS in the UV spectrum. We used the method of optical absorption spectroscopy as deployed in a model software called Spectralcalc. The software comprising the HITRAN12 latest line list was used to simulate OACS values. Simulated results were obtained using the latest available line list on the HITRAN12 Spectralcalc simulator. Our obtained results were slightly different from those reported for the visible spectrum but followed a similar trend, in that it showed a decrease in the OACS with an increase in the temperature from 100 K to 350 K at 279.95 nm and 257.34 nm by 1.09 % and 1.43 % respectively. While optical path-length had zero effect on it. We, therefore, conclude that at constant pressure, OACS depends on both temperature and absorption wavelength but not on optical path-length. The analysis reported in this work only seeks to address the differences in the OACS relative to temperature in the UV spectrum. So, the results obtained in this paper can be used to optimally configure ozone gas sensors to obtain an accurate measurement.
Dr. Samad Roshan Entezar,
Volume 15, Issue 2 (7-2021)
Abstract
We theoretically analyze the sensing properties of a one-dimensional photonic crystal-based biosensor for detecting cancer cells infiltrated in a defect cavity layer. The biosensor consists of a sample cavity layer sandwiched between two identical photonic crystals of Hgba2Ca2Cu3O8+d and GaAs. We use the transfer matrix method to evaluate the performance of the biosensor. We show that a defect mode appears in the transmission spectrum of the biosensor that its position depends on the type of cancer cells in the cavity layer. The analysis is carried out by comparing the transmittance peaks of the cancer cells with the normal cells. We investigate the performance of the biosensor under different hydrostatic pressures and temperatures. We show that one can use temperature change to fine-tune the frequency of the defect modes. In addition, we can adjust the working area of the biosensor by changing the hydrostatic pressure. It is shown that the sensitivity of the biosensor is independent of the temperature, while it strongly depends on the hydrostatic pressure.
Batul Nasrabadi, Mohammad Ismail Zibaii, Seyedeh Mahshad Hosseini,
Volume 16, Issue 1 (1-2022)
Abstract
ta charset="UTF-8" >Optogenetics is an advanced optical tool in neuroscience research. However, light stimulation in optogenetic experiments may also affect neural function by generating heat. In this paper, the effect of increasing the temperature of the brain tissue was studied during light stimulation. The Hodgkin-Huxley model and the hippocampal pyramidal cell model have been used to investigate the effect of temperature on spike neurons. The modeling results show that irradiation of brain tissue by pulsed laser with a frequency of 40 Hz, the duty cycle of 90% and wavelength of 593 nm at a distance of 10 μm from the tip of the fiber, for 60 seconds with a power of 1 and 40 mW leads to the temperature change from 37 °C to 39 °C. The obtained results show that the laser intensity decreases to zero at a distance of 1 mm from the tip of a fiber, which is absorbed by the tissue and causes a temperature rise of 2 °C that can increase the spike rate of neurons by 16.6%.
Hasan Ebadian, Mohammad Mahdi Moslem, Nabiollah Azarpoor,
Volume 17, Issue 1 (1-2023)
Abstract
The simulation results of a 10-kW heat capacity slab laser are presented. Two different schemes for optical pumping with high-power laser diodes are investigated. The simulation of optical pumping using ZEMAX software demonstrates a uniform pump distribution within the laser slabs. Additionally, the temperature distribution in the laser slab is examined using COMSOL. The findings for two distinct laser designs reveal that increasing the slab dimensions reduces the temperature distribution and thermal issues. Furthermore, cooling schemes indicate that the cooling phase of a 10-kW HCL falls within the range of 20-40 seconds. A comparison of water and air cooling of the optically pumped slabs during the cooling phase demonstrates that water cooling is more efficient than air cooling. The simulation results confirm that the proposed laser will be an efficient device for laser material processing. A focused 10-kW HCL laser will melt the steel sheet after less than 1 s at 1490 K.