Search published articles


Showing 2 results for Pics3d

Zahra Danesh Kaftroudi, Abolfazl Mzandarani,
Volume 13, Issue 1 (1-2019)
Abstract

In this paper, a numerical study of barrier characterization effects on the high-temperature internal performance of an InGaAsP multi-quantum well laser is presented. The softwareused for this purpose self-consistently combines the three-dimensional simulation of carrier transports, self-heating, and optical waveguiding. The laser model calculates all relevant physical mechanisms, including their dependence on temperature and local carrier density. The results have shown that the proposed laser, which operates at 1325 nm, suffers from electron leakage. The electron leakage current decreases by reducing the barrier thickness. Although tensile strain barriers lead to improved laser optical behavior, it increases leakage current because of electron non-uniformity.


Zahra Danesh Kaftroudi,
Volume 15, Issue 1 (1-2021)
Abstract

In this work, for the first time, the improved lasing performance of a blue GaN-based laser diode is demonstrated by the introduction and vertical optimization of a new quadruple asymmetric waveguide structure. In the new proposed waveguide structure, in the first step, p-waveguide and electron blocking layers have been omitted. Then a triple asymmetry was considered for the design of an AlGaNp-cladding layer inside the waveguide structure. The performances of the conventional and proposed laser structures were theoretically studied using the photonic integrated circuit simulator in 3D simulation software. The 3deminsional simulations of carrier transport, optical wave- guiding and self-heating were combined self-consistently in the software. A good agreement was achieved between simulations and experiments by careful choice of different material parameters in the physical models. The effects of the AlGaN p-cladding layer properties on the performance of the new quadruple asymmetric waveguide GaN-based laser were theoretically studied. Threshold current, output power, and operation voltage were compared for different composition of Al, doping, and thickness of the AlGaN p-cladding layer. According to the simulation results, the optimized values of Al composition, doping, and thickness of the AlGaN p-cladding layer obtained for high-power performance.

Page 1 from 1     

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb