Showing 2 results for Asghari
Faramarz E. Seraji, F. Asghari,
Volume 3, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol. 3, No. 1, Winter-Spring 2009)
Abstract
In this paper, we present a comparative numerical analysis to determine the refractive index of photonic crystal fibers (PCFs) by using FDFD method and used the results to evaluate the confinement losses of PCFs by considering the effects of air-hole rings in the cladding.
It is shown that by increasing the wavelength, the imaginary part of refraction index rises, resulting in increase of confinement losses nearly by order of 10. In lower wavelengths over the range of 0.2 to 1 μm, these losses were shown to be negligible. The obtained results show that as the number of air-hole ring in the cladding increases, the confinement losses over wavelengths would reduce. To show the effect of air-hole rings on confinement losses in PCFs, the FDFD method yielded accurate results that agree well with results of FEM method and source–model technique reported by others.
Ahmad Salmanogli, Farzin Asghari Sana,
Volume 13, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 13, No 1, Winter-Spring 2019)
Abstract
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array plasmon. For this reason, we consider a system containing array of the plasmonic nanoparticles and quantum dots. For a complete understanding, we analyze the system with the full quantum theory. Notably, the full quantum analyzing enables us to investigate the quantum fluctuation of the array field. Here, for instance, we study the second-order correlation function and report its modeling results.