Volume 12, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 12, No 1, Winter-Spring 2018)                   IJOP 2018, 12(1): 21-32 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani Gishini M S, Ganjovi A, Taraz M, Saeed M. Particle in Cell-Monte Carlo Collisions of a Plasma Column Driven by Surface Wave Plasma Discharges. IJOP. 2018; 12 (1) :21-32
URL: http://ijop.ir/article-1-286-en.html
Photonics Research Institute, Institute of Science and High Technology and Environmental Sciences
Abstract:   (1646 Views)

In this work, applicability of Particle in Cell-Monte Carlo Collisions (PIC-MCC) simulation method for better understanding of the plasma physical mechanisms and real important aspects of a plasma column driven by surface wave plasma discharges that is used in plasma antennas is examined. Via the implementation of geometry and physical parameters of the plasma column to an Object Oriented PIC-MCC code, the plasma density, electrical conductivity, plasma kinetic energy and electric field inside the plasma column as its essential properties are obtained. The gas within the plasma column is taken to be argon which is kept at the low operational background pressures. The radial increasing and axial decreasing of the electric field in the plasma column is observed. Moreover, the plasma density reduces radially, while it is maximized along the axial positions. It is seen that, the density of charged particles and their corresponding current densities are maximized at the positions closer to the surface wave launcher.

Full-Text [PDF 626 kb]   (488 Downloads)    
Type of Study: Research | Subject: General
Received: 2016/08/28 | Revised: 2016/12/31 | Accepted: 2017/01/16 | Published: 2017/10/28

1. Y.A. Akimov and K. Ostrikov, "Interaction of transverse electromagnetic waves with counterpropagating surface waves at a plasma-dielectric interface," Phys. Scr., vol. 76, pp. 461-465, 2007. [DOI:10.1088/0031-8949/76/5/010]
2. L. Stenflo, "Theory of nonlinear plasma surface waves," Phys. Scr., vol. 1996, pp. 59-62, 1996. [DOI:10.1088/0031-8949/1996/T63/008]
3. Y.M. Aliev, A.V. Maximov, H. Schlüter, and A. Shivarova, "On the axial structure of surface wave sustained discharges," Phys. Scr., vol. 51, pp. 257-262, 1995. [DOI:10.1088/0031-8949/51/2/015]
4. G.G. Borg, J.H. Harris, N.M. Martin, D. Thorncraft, R. Milliken, D.G. Miljak, B. Kwan, T. Ng, and J. Kircher, "Plasmas as antennas: Theory, experiment and applications," Phys. Plasmas, vol. 7 pp. 2198-2202, 2000. [DOI:10.1063/1.874041]
5. M. Moisan, Z. Zakrzewskit, and R. Pantel, "The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns," J. Phys. D: Appl. Phys., vol. 12, pp. 219-238, 1979. [DOI:10.1088/0022-3727/12/2/008]
6. R. Kumar and D. Bora, "A reconfigurable plasma antenna," J. Appl. Phys., vol. 107, p. 053303, 2010. [DOI:10.1063/1.3318495]
7. A.B. Sá, C.M. Ferreira, S. Pasquiers, C. Boisse-Laporte, P. Leprince, and J. Marec, "Self‐consistent modeling of surface wave produced discharges at low pressures," J. Appl. Phys., vol. 70, pp. 4147-4158, 1991. [DOI:10.1063/1.349137]
8. H. Kousaka and K. Ono "Numerical Analysis of the Electromagnetic Fields in a Microwave Plasma Source Excited by Azimuthally Symmetric Surface Waves," Jpn. J. Appl. Phys., vol. 41, pp. 2199-2206, 2002. [DOI:10.1143/JJAP.41.2199]
9. H. Igarashi, K. Watanabe, T. Ito, T. Fukuda, and T. Honma, "A finite-element analysis of surface wave plasmas," IEEE Trans. Magn., vol. 40, pp. 605-608, 2004. [DOI:10.1109/TMAG.2004.825450]
10. Y. Kabouzi, D.B. Graves, E. Casta-os-Martínez, and M. Moisan, "Modeling of atmospheric-pressure plasma columns sustained by surface waves," Phys. Rev. E, vol. 75, pp. 016402, 2007. [DOI:10.1103/PhysRevE.75.016402]
11. L.L. Alves, S. Letout, and C. Boisse-Laporte, "Modeling of surface-wave discharges with cylindrical symmetry," Phys. Rev. E, vol. 79, pp. 016403 (1-18), 2009.
12. M. Nikovski, Zh. Kissovski, and E. Tatarova, "Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature," J. Phys.: Conf. Ser., vol. 700, pp. 012014, 2016. [DOI:10.1088/1742-6596/700/1/012014]
13. M. Moisan, A. Shivarova, and A.W. Trivelpiece, "Experimental investigations of the propagation of surface waves along a plasma column," Plasma Phys., vol. 24, pp. 1331-1400, 1982. [DOI:10.1088/0032-1028/24/11/001]
14. M. Moisan, M. Ferreira, Y. Hajlaoui, D. Henry, J. Hubert, R. Pantel, A. Ricard, and Z. Zakrzewski, "Properties and applications of surface wave produced plasmas," Revue. Phys. Appl., vol. 17, pp. 707-727, 1982. [DOI:10.1051/rphysap:019820017011070700]
15. M. Moisan and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface waves," J. Phys. D: Appl. Phys., vol. 24, pp. 1025-1048, 1991. [DOI:10.1088/0022-3727/24/7/001]
16. R. Kumar and D. Bora, "Experimental investigation of different structures of a radio frequency produced plasma column,"Phys. Plasmas, vol. 17, pp. 043503 (1-7), 2010.
17. J.P. Verboncoeur, "Particle simulation of plasmas: review and advances," Plasma Phys. Control. Fusion, vol. 47, pp. A231-A260, 2005. [DOI:10.1088/0741-3335/47/5A/017]
18. V. Vahedi and M. Surendra, "A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges," Comput. Phys. Commun., vol. 87, pp. 179-198, 1995. [DOI:10.1016/0010-4655(94)00171-W]
19. C.K. Birdsall and A.B. Langdon, Plasma Physics Via Computer Simulation, New York: McGraw-Hill, 1985.
20. C.K. Birdsall, "Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC," IEEE Trans. Plasma Sci., vol. 19, pp. 65-85, 1991. [DOI:10.1109/27.106800]
21. V. Vahedi and G. DiPeso, "Simultaneous Potential and Circuit Solution for Two-Dimensional Bounded Plasma Simulation Codes," J. Comput. Phys. vol. 131, pp. 149-163, 1997. [DOI:10.1006/jcph.1996.5591]
22. G.Y. Park, S.J. You, F. Iza, and J.K. Lee, "Abnormal Heating of Low-Energy Electrons in Low-Pressure Capacitively Coupled Discharges," Phys. Rev. Lett., vol. 98 pp. 085003, 2007. [DOI:10.1103/PhysRevLett.98.085003]
23. H.C. Kim and J.K. Lee, "Mode Transition Induced by Low-Frequency Current in Dual-Frequency Capacitive Discharges," Phys. Rev. Lett., vol. 93, pp. 085003 (1-4), 2004.
24. V.I. Kolobov, "Striations in rare gas plasmas," J. Phys. D: Appl. Phys., vol. 39, pp. R487- R506, 2006. [DOI:10.1088/0022-3727/39/24/R01]
25. Y.J. Hong, M. Yoon, F. Iza, G.C. Kim, and J.K. Lee, "Comparison of fluid and particle-in-cell simulations on atmospheric pressure helium microdischarges," J. Phys. D: Appl. Phys., vol. 41, pp. 245208 (1-5), 2008.
26. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, and J.K. Lee, "Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects," J. Phys. D: Appl. Phys., vol. 38, pp. R283-R301, 2005. [DOI:10.1088/0022-3727/38/19/R01]
27. O.A. Popov, High Density Plasma Sources Design, Physics and Performance, Massachusetts: Elsevier, 1996.
28. J.P. Verboncoeur, A.B. Langdon, and N.T. Gladd, "An object-oriented electromagnetic PIC code," Comput. Phys. Commun., vol. 87, pp. 199-211, 1995. [DOI:10.1016/0010-4655(94)00173-Y]
29. E. Balagurusamy, Object Oriented Programming With C++, New Delhi: Tata McGraw-Hill, 2008.
30. [Online]. Available: http://ptsg.egr.msu.edu/
31. S.C. Chapra and R.P. Canale, Numerical Methods For Engineers, New York: McGraw-Hill, 2015.
32. N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, New York: McGraw-Hill, 1973.
33. R. Kumar, S.V. Kulkarni, and D. Bora, "Cylindrical stationary striations in surface wave produced plasma columns of argon," Phys. Plasmas, vol. 14, pp. 122101 (1-8), 2007.

Add your comments about this article : Your username or Email:

© 2019 All Rights Reserved | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb