Volume 12, Issue 1 (International Journal of Optics and Photonics (IJOP) Vol 12, No 1, Winter-Spring 2018)                   IJOP 2018, 12(1): 43-56 | Back to browse issues page


XML Print


1- Tarbiat Modares University
2- University of Shahid Beheshti
Abstract:   (6514 Views)

Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented in an effort to rationalize our experimental results. Theoretical results have been obtained with a polarizable continuum model time-dependent density functional theory (PCM-TD-DFT) approach. At first, a vast functional benchmark has been performed to determine a suitable approach for determination of electronic structure and UV-Vis. absorption spectrum of DCM. In a second step, we evaluated the impact of the atomic basis set on the electronic transition energies using a large panel of Pople’s basis sets ,up to the 6-31+G(3df,2p) and also a correlation consistent basis set, cc-pVTZ. It turns out that the selected basis set has a relatively finite influence on the calculated electronic transition energies as well as the topology of the absorption shape, but both are significantly affected by the chosen functional. In the present case, no single functional simultaneously provides highly accurate positions and intensities of the different bands, but mPW1PBE and mPW1LYP appear to be a good compromise. The mPW1PBE along with medium basis sets produced both absorption bands with maximum peaks about 463 and 346 nm. At all stages, ethanol has been chosen as a solvent environment. To improve the accuracy of first electronic excitation, a complete analysis of the origin of the band shape using TD-DFT vibrational couplings was performed. Finally the computed transition energy was corrected to 472 nm which was in excellent agreement with experiments.

Full-Text [PDF 881 kb]   (4769 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2015/05/24 | Revised: 2015/08/10 | Accepted: 2015/12/15 | Published: 2017/10/28

References
1. P.R. Hammond, "Laser dye DCM, its spectral properties, synthesis and comparison with other dyes in the red," Opt. Commun. vol. 29, no. 3, pp. 331–333, 1979. [DOI:10.1016/0030-4018(79)90111-1]
2. E.G. Marason, "Laser dye DCM: CW, synchronously pumped, cavity pumped and single-frequency performance," Opt. Commun. vol. 37, no. 1, pp. 56–58, 1981. [DOI:10.1016/0030-4018(81)90176-0]
3. J.C. Mialocq and M. Meyer, "Photophysical properties of the DCM and DFSBO styryl dyes consequence for their laser properties," Laser Chem. vol. 10, no. 5–6, pp. 277–296, 1990. [DOI:10.1155/1990/67392]
4. S.Z.Y.C.M. Meili, W.P.W.T.W. Gongjun, and Q. Minjun, "Tunable properties of a new efficient laser dye DCM," Chinese J. Lasers, vol. 10, pp. 1-5, 1981.
5. J.S. Batchelder, A.H. Zewail, and T. Cole, "Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies," Appl. Opt. vol. 20, no. 21, pp. 3733–3754, 1981. [DOI:10.1364/AO.20.003733]
6. J. Sansregret, J.M. Drake, W.R.L. Thomas, and M.L. Lesiecki, "Light transport in planar luminescent solar concentrators: the role of DCM self-absorption," Appl. Opt. vol. 22, no. 4, pp. 573–577, 1983. [DOI:10.1364/AO.22.000573]
7. S.P. Ermer, J.F. Valley, R.S. Lytel, G.F. Lipscomb, T.E. Van Eck, D.G. Girton, D.S. Leung, and S. M. Lovejoy, "DCM-polyimide system for triple-stack poled polymer electro-optic devices," in OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science and Engineering, Vol. 61, pp. 183–192, 1993.
8. M. Meyer and J.C. Mialocq, "Ground state and singlet excited state of laser dye DCM: dipole moments and solvent induced spectral shifts," Opt. Commun. vol. 64, no. 3, pp. 264–268, 1987. [DOI:10.1016/0030-4018(87)90390-7]
9. M. Meyer, J.C. Mialocq, and B. Perly, "Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye: picosecond and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies," J. Phys. Chem. vol. 94, no. 1, pp. 98–104, 1990. [DOI:10.1021/j100364a015]
10. M. Lesiecki, F. Asmar, J.M. Drake, and D.M. Camaioni, "Photoproperties of DCM," J. Lumin. vol. 31, pp. 546–548, 1984. [DOI:10.1016/0022-2313(84)90055-3]
11. J.M. Drake, M.L. Lesiecki, J. Sansregret, and W.R.L. Thomas, "Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation," Appl. Opt. vol. 21, no. 16, pp. 2945–2952, 1982. [DOI:10.1364/AO.21.002945]
12. L.S. Hung and C.H. Chen, "Recent progress of molecular organic electroluminescent materials and devices," Mater. Sci. Eng. Reports, vol. 39, no. 5, pp. 143–222, 2002. [DOI:10.1016/S0927-796X(02)00093-1]
13. Z.Y. Xie, L.S. Hung, and S.T. Lee, "High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure," Appl. Phys. Lett. vol. 79, no. 7, pp. 1048–1050, 2001. [DOI:10.1063/1.1390479]
14. S.K. Pal, D. Mandal, D. Sukul, S. Sen, and K. Bhattacharyya, "Solvation dynamics of DCM in human serum albumin," J. Phys. Chem. B, vol. 105, no. 7, pp. 1438–1441, 2001. [DOI:10.1021/jp002368o]
15. W. Mccolgin and F. Webster, "Arylidene dye lasers." Google Patents, 03-Dec-1974.
16. J. McMurry, Organic chemistry. 5th, Ed. RR Donnelly Sons Willard, Ohio, 2000.
17. J.M. Drake, M.L. Lesiecki, and D.M. Camaioni, "Photophysics and cis-trans isomerization of DCM," Chem. Phys. Lett. vol. 113, no. 6, pp. 530–534, 1985. [DOI:10.1016/0009-2614(85)85026-0]
18. M. Meyer, J.C. Mialocq, and M. Rougee, "Fluorescence lifetime measurements of the two isomers of the laser dye DCM," Chem. Phys. Lett. vol. 150, no. 5, pp. 484–490, 1988. [DOI:10.1016/0009-2614(88)87235-X]
19. S. Marguet, J.-C. Mialocq, P. Millié, G. Berthier, and F. Momicchioli, "Intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye in polar solvents. A CS INDO MRCI study," Chem. Phys. vol. 160, no. 2, pp. 265–279, 1992. [DOI:10.1016/0301-0104(92)80127-H]
20. J.C. Mialocq, X. Armand, and S. Marguet, "A new sensitive chemical actinometer for time-resolved and continuous photochemistry: the DCM styrene dye," J. Photochem. Photobiol. A Chem. vol. 69, no. 3, pp. 351–356, 1993. [DOI:10.1016/1010-6030(93)85102-E]
21. M.M. Martin, P. Plaza, and Y.H. Meyer, "Ultrafast intramolecular charge transfer in the merocyanine dye DCM," Chem. Phys. vol. 192, no. 3, pp. 367–377, 1995. [DOI:10.1016/0301-0104(94)00406-Z]
22. T. Gustavsson, G. Baldacchino, J.-C. Mialocq, and S. Pommeret, "A femtosecond fluorescence up-conversion study of the dynamic Stokes shift of the DCM dye molecule in polar and non-polar solvents," Chem. Phys. Lett. vol. 236, no. 6, pp. 587–594, 1995. [DOI:10.1016/0009-2614(95)00276-A]
23. S. Pommeret, T. Gustavsson, R. Naskrecki, G. Baldacchino, and J.C. Mialocq, "Femtosecond absorption and emission spectroscopy of the DCM laser dye," J. Mol. Liq. vol. 64, no. 1, pp. 101–112, 1995. [DOI:10.1016/0167-7322(95)92824-U]
24. H. Zhang, A.M. Jonkman, P. Van der Meulen, and M. Glasbeek, "Femtosecond studies of charge separation in phot-excited DCM in liquid solution," Chem. Phys. Lett. vol. 224, no. 5, pp. 551–556, 1994. [DOI:10.1016/0009-2614(94)00562-1]
25. A.J. Van Tassle, M.A. Prantil, and G.R. Fleming, "Investigation of the excited state structure of DCM via ultrafast electronic pump/vibrational probe," J. Phys. Chem. B, vol. 110, no. 38, pp. 18989–18995, 2006. [DOI:10.1021/jp0603738]
26. I.D. Petsalakis, D.G. Georgiadou, M. Vasilopoulou, G. Pistolis, D. Dimotikali, P. Argitis, and G. Theodorakopoulos, "Theoretical Investigation on the Effect of Protonation on the Absorption and Emission Spectra of Two Amine-Group-Bearing, Red 'Push− Pull' Emitters, 4-Dimethylamino-4′-nitrostilbene and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino) styryl-4H-pyran, by," J. Phys. Chem. A, vol. 114, no. 17, pp. 5580–5587, 2010. [DOI:10.1021/jp100338d]
27. G. Scalmani, M.J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, and V. Barone, "Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model," J. Chem. Phys. vol. 124, no. 9, pp. 094107 (1-15), 2006.
28. J. Tomasi, B. Mennucci, and R. Cammi, "Quantum mechanical continuum solvation models," Chem. Rev. vol. 105, no. 8, pp. 2999–3094, 2005. [DOI:10.1021/cr9904009]
29. C. Van Caillie and R.D. Amos, "Geometric derivatives of excitation energies using SCF and DFT," Chem. Phys. Lett. vol. 308, no. 3, pp. 249–255, 1999. [DOI:10.1016/S0009-2614(99)00646-6]
30. F. Furche and R. Ahlrichs, "Adiabatic time-dependent density functional methods for excited state properties," J. Chem. Phys. vol. 117, no. 16, pp. 7433–7447, 2002. [DOI:10.1063/1.1508368]
31. M. Dierksen and S. Grimme, "The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of 'exact' Hartree-Fock exchange," J. Phys. Chem. A, vol. 108, no. 46, pp. 10225–10237, 2004. [DOI:10.1021/jp047289h]
32. A. Frisch, Gaussian 09: User's Reference. Gaussian, 2009.
33. A.D. Becke, "Density‐functional thermochemistry. III. The role of exact exchange," J. Chem. Phys. vol. 98, no. 7, pp. 5648–5652, 1993. [DOI:10.1063/1.464913]
34. C. Lee, W. Yang, and R.G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. [DOI:10.1103/PhysRevB.37.785]
35. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, "Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields," J. Phys. Chem. vol. 98, no. 45, pp. 11623–11627, 1994. [DOI:10.1021/j100096a001]
36. X. Xu and W.A. Goddard, "The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties," Proc. Natl. Acad. Sci. U. S. A. vol. 101, no. 9, pp. 2673–2677, 2004. [DOI:10.1073/pnas.0308730100]
37. J. Baker and P. Pulay, "Assessment of the Handy–Cohen optimized exchange density functional for organic reactions," J. Chem. Phys. vol. 117, no. 4, pp. 1441–1449, 2002. [DOI:10.1063/1.1485723]
38. A.D. Becke, "Density-functional exchange-energy approximation with correct asymptotic behavior," Phys. Rev. A, vol. 38, no. 6, pp. 3098-3100, 1988. [DOI:10.1103/PhysRevA.38.3098]
39. C. Adamo and V. Barone, "Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models," J. Chem. Phys. vol. 108, no. 2, pp. 664–675, 1998. [DOI:10.1063/1.475428]
40. J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. vol. 77, no. 18, pp. 3865-3868, 1996. [DOI:10.1103/PhysRevLett.77.3865]
41. W.J. Hehre, L. Radom, P.V.R. Schleyer, and J.A. Pople, AB Initio Molecular Orbital Theory, John Wiley & Sons, 1986.
42. Y. Zhao and D.G. Truhlar, "Comparative DFT study of van der Waals complexes: rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers," J. Phys. Chem. A, vol. 110, no. 15, pp. 5121–5129, 2006. [DOI:10.1021/jp060231d]
43. J.-D. Chai and M. Head-Gordon, "Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections," Phys. Chem. Chem. Phys. vol. 10, no. 44, pp. 6615–6620, 2008. [DOI:10.1039/b810189b]
44. Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, "A long-range-corrected time-dependent density functional theory," J. Chem. Phys. vol. 120, no. 18, pp. 8425–8433, 2004. [DOI:10.1063/1.1688752]
45. P.C. Hariharan and J.A. Pople, "The influence of polarization functions on molecular orbital hydrogenation energies," Theor. Chim. Acta, vol. 28, no. 3, pp. 213–222, 1973. [DOI:10.1007/BF00533485]
46. T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. R. Schleyer, "Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+ G basis set for first‐row elements, Li–F," J. Comput. Chem. vol. 4, no. 3, pp. 294–301, 1983. [DOI:10.1002/jcc.540040303]
47. A.K. Wilson, T. van Mourik, and T.H. Dunning, "Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon," J. Mol. Struct. Theochem. vol. 388, pp. 339–349, 1996. [DOI:10.1016/S0166-1280(96)80048-0]
48. F. Santoro, A. Lami, R. Improta, J. Bloino, and V. Barone, "Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: The Qx band of porphyrin as a case study," J. Chem. Phys. vol. 128, no. 22, pp. 224311 (1-17), 2008.
49. F. Santoro, R. Improta, A. Lami, J. Bloino, and V. Barone, "Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution," J. Chem. Phys. vol. 126, no. 8, pp. 84509 (1-13), 2007.
50. F. Santoro, A. Lami, R. Improta, and V. Barone, "Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution," J. Chem. Phys. vol. 126, no. 18, pp. 184102 (1-11), 2007.
51. J. Dreyer and A. Kummrow, "Shedding light on excited-state structures by theoretical analysis of femtosecond transient infrared spectra: intramolecular charge transfer in 4-(dimethylamino) benzonitrile," J. Am. Chem. Soc. vol. 122, no. 11, pp. 2577–2585, 2000. [DOI:10.1021/ja992095e]
52. K. Dahl, R. Biswas, N. Ito, and M. Maroncelli, "Solvent dependence of the spectra and kinetics of excited-state charge transfer in three (alkylamino) benzonitriles," J. Phys. Chem. B, vol. 109, no. 4, pp. 1563–1585, 2005. [DOI:10.1021/jp046605p]
53. E. Abraham, J. Oberlé, G. Jonusauskas, R. Lapouyade, and C. Rulliere, "Photophysics of 4-dimethylamino 4′-cyanostilbene and model compounds: dual excited states revealed by sub-picosecond transient absorption and Kerr ellipsometry," Chem. Phys. vol. 214, no. 2, pp. 409–423, 1997. [DOI:10.1016/S0301-0104(96)00301-1]
54. E. Gilabert, R. Lapouyade, and C. Rullière, "Time-resolved dual fluorescence of push—pull stilbenes at high solute concentration and excitation intensity: evidence for an emitting bicimer," Chem. Phys. Lett. vol. 185, no. 1, pp. 82–87, 1991. [DOI:10.1016/0009-2614(91)80144-M]
55. M. Hashimoto and H. Hamaguchi, "Structure of the twisted-intramolecular-charge-transfer excited singlet and triplet states of 4-(dimethylamino) benzonitrile as studied by nanosecond time-resolved infrared spectroscopy," J. Phys. Chem. vol. 99, no. 20, pp. 7875–7877, 1995. [DOI:10.1021/j100020a008]
56. W.M. Kwok, C. Ma, P. Matousek, A.W. Parker, D. Phillips, W.T. Toner, M. Towrie, and S. Umapathy, "A determination of the structure of the intramolecular charge transfer state of 4-dimethylaminobenzonitrile (DMABN) by time-resolved resonance Raman spectroscopy," J. Phys. Chem. A, vol. 105, no. 6, pp. 984–990, 2001. [DOI:10.1021/jp003705w]
57. R. Lapouyade, A. Kuhn, J.F. Letard, and W. Rettig, "Multiple relaxation pathways in photoexcited dimethylaminonitro-and dimethylaminocyano-stilbenes," Chem. Phys. Lett. vol. 208, no. 1, pp. 48–58, 1993. [DOI:10.1016/0009-2614(93)80075-Z]
58. W. Rettig and W. Majenz, "Competing adiabatic photoreaction channels in stilbene derivatives," Chem. Phys. Lett. vol. 154, no. 4, pp. 335–341, 1989. [DOI:10.1016/0009-2614(89)85366-7]
59. J.-M. Viallet, F. Dupuy, R. Lapouyade, and C. Rullière, "Multiple luminescence from 'push-pull'diphenyl polyenes revealed by picosecond spectroscopy. Evidence for TICT and bicimer states," Chem. Phys. Lett. vol. 222, no. 6, pp. 571–578, 1994. [DOI:10.1016/0009-2614(94)00396-3]
60. J. Oberlé, E. Abraham, G. Jonusauskas, and C. Rulliere, "Study of the intramolecular charge‐transfer (ICT) process in 4‐dimethylamino‐4′‐nitrostilbene by picosecond time‐resolved CARS," J. Raman Spectros. vol. 31, no. 4, pp. 311–317, 2000. https://doi.org/10.1002/(SICI)1097-4555(200004)31:4<311::AID-JRS544>3.0.CO;2-8 [DOI:10.1002/(SICI)1097-4555(200004)31:43.0.CO;2-8]
61. D. Jacquemin, V. Wathelet, E.A. Perpete, and C. Adamo, "Extensive TD-DFT benchmark: singlet-excited states of organic molecules," J. Chem. Theory Comput. vol. 5, no. 9, pp. 2420–2435, 2009. [DOI:10.1021/ct900298e]
62. M.R. Silva-Junior, M. Schreiber, S.P.A. Sauer, and W. Thiel, "Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction," J. Chem. Phys. vol. 129, no. 10, pp. 104103 (1-15), 2008.
63. L. Goerigk and S. Grimme, "Assessment of TD-DFT methods and of various spin scaled CIS (D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes," J. Chem. Phys. vol. 132, no. 18, pp. 184103 (1-9), 2010.
64. D. Jacquemin, E. Brémond, A. Planchat, I. Ciofini, and C. Adamo, "TD-DFT vibronic couplings in anthraquinones: from basis set and functional benchmarks to applications for industrial dyes," J. Chem. Theory Comput. vol. 7, no. 6, pp. 1882–1892, 2011. [DOI:10.1021/ct200259k]
65. D. Jacquemin, J.-M. André, and E.A. Perpète, "Geometry, dipole moment, polarizability and first hyperpolarizability of polymethineimine: An assessment of electron correlation contributions," J. Chem. Phys. vol. 121, no. 9, pp. 4389–4396, 2004. [DOI:10.1063/1.1775181]
66. E.A. Perpète, V. Wathelet, J. Preat, C. Lambert, and D. Jacquemin, "Toward a theoretical quantitative estimation of the λmax of anthraquinones-based dyes," J. Chem.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.