1. K.E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, eds. Terahertz Spectroscopy and Imaging, Vol. 171, Springer, 2012. [
DOI:10.1007/978-3-642-29564-5]
2. S.L. Dexheimer, Terahertz Spectroscopy: Principles and Applications, CRC press, 2017. [
DOI:10.1201/9781420007701]
3. J.H. Son, ed. Terahertz Biomedical Science and Technology, CRC Press, 2014. [
DOI:10.1201/b17060]
4. J. Neu and C.A. Schmuttenmaer, "Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS)," J. Appl. Phys. Vol. 124, pp. 231101 (1-14), 2018. [
DOI:10.1063/1.5047659]
5. M. Singh and S. Singh, "Design and Performance Investigation of Miniaturized Multi‐Wideband Patch Antenna for Multiple Terahertz Applications," Photon. Nanostructures-Fundamentals Appl. Vol. 44, pp. 100900 (1-10), 2021. [
DOI:10.1016/j.photonics.2021.100900]
6. D. Turan, N.T. Yardimci, P.K. Lu, and M. Jarrahi, "Terahertz Generation through Bias-free Telecommunication Compatible Photoconductive Nanoantennas over a 5 THz Radiation Bandwidth," 2020 IEEE/MTT-S International Microwave Symposium (IMS), IEEE, pp. 87-90, 2020. [
DOI:10.1109/IMS30576.2020.9224081]
7. E.N.F. Boby, V. Rathinasamy, T.R. Rao, and S. Mondal, "Parametric Analysis of Inter-combed Photoconductive Antenna for Terahertz Communication," 2021 International Conference on Communication information and Computing Technology (ICCICT), IEEE, pp. 1-4, 2021.
8. J. Zhang, "Characterization of the terahertz photoconductive antenna by three-dimensional finite-difference time-domain method," arXiv preprint arXiv:1406.3872, 2014.
9. M. Nazeri and R. Massudi, "Study of a large-area THz antenna by using a finite difference time domain method and lossy transmission line," Semiconductor Science Technol. Vol. 25, pp. 045007 (1-7), 2010. [
DOI:10.1088/0268-1242/25/4/045007]
10. S.G. Park, K.H. Jin, M. Yi, J.C. Ye, J. Ahn, and K.H. Jeong, "Enhancement of terahertz pulse emission by optical nanoantenna," ACS Nano, Vol. 6, pp. 2026-2031, 2012. [
DOI:10.1021/nn204542x] [
PMID]
11. M. Koohi and M. Neshat, "Evaluation of graphene-based terahertz photoconductive antennas," Scientia Iranica. Transaction F, Nanotechnology, Vol. 22, pp. 1299-1305, 2015.
12. M. Nazeri and A. Sajedi Bidgoli, "Change of terahertz antenna spectrum when surrounding dielectric alters," Optik, Vol. 183, pp. 650-655, 2019. [
DOI:10.1016/j.ijleo.2019.02.151]
13. C.W. Berry, M.R. Hashemi, and M. Jarrahi, "Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas," Appl. Phys. Lett. Vol. 104, pp. 081122 (1-5), 2014. [
DOI:10.1063/1.4866807]
14. N.I. Cabello, A. De Los Reyes, V. Sarmiento, J.P. Ferrolino, V.D.A. Vistro, J.D. Vasquez, H. Bardolaza, H. Kitahara, M. Tani, A. Salvador, and A. Somintac, "Terahertz Emission Enhancement of Gallium-Arsenide-Based Photoconductive Antennas by Silicon Nanowire Coating," IEEE Trans. Terahertz Science Technol. Vol. 12, pp. 36-41, 2021. [
DOI:10.1109/TTHZ.2021.3115726]
15. P. Sharma, M. Kumar, V.P.S. Awana, A. Singh, H. Gohil, and S.S. Prabhu, "Comprehensive analysis of Terahertz frequency response of Bi2Se3 and Bi2Te3 single crystals using Terahertz time-domain spectroscopy," Mater. Sci. Eng. B, Vol. 272, pp. 115355 (1-6), 2021. [
DOI:10.1016/j.mseb.2021.115355]
16. M.A. Unutmaz and M. Unlu, "Terahertz spoof surface plasmon polariton waveguides: a comprehensive model with experimental verification," Scientific Reports, Vol. 9, pp. 1-8, 2019. [
DOI:10.1038/s41598-019-44029-1] [
PMID] [
PMCID]
17. F. Neubrech, M. Hentschel, and N. Liu, "Reconfigurable plasmonic chirality: fundamentals and applications," Adv. Mater. Vol. 32, pp. 1905640 (1-7), 2020. [
DOI:10.1002/adma.201905640] [
PMID]
18. M. Nazeri and H. Abbasi, "Study of terahertz antenna by surface wave theory," Iranian J. Sci. Technol. Trans. A: Science, Vol. 41, pp. 1055-1061, 2017. [
DOI:10.1007/s40995-017-0333-7]
19. G.Q. Liao and Y.T. Li, "Review of intense terahertz radiation from relativistic laser-produced plasmas," IEEE Trans. Plasma Science, Vol. 47, pp. 3002-3008, 2019. [
DOI:10.1109/TPS.2019.2915624]
20. M. Janipour, I.B. Misirlioglu, and K. Sendur, "A theoretical treatment of THz resonances in semiconductor GaAs p-n junctions," Mater. Vol. 12, pp. 2412 (1-14), 2019. [
DOI:10.3390/ma12152412] [
PMID] [
PMCID]
21. S. Pandey, B. Gupta, A. Chanana, and A. Nahata, "Non-Drude like behavior of metals in the terahertz spectral range," Adv. Phys.: X, Vol. 1, pp. 176-193, 2016. [
DOI:10.1080/23746149.2016.1165079]
22. F. Sanjuan and J.O. Tocho, "Optical properties of silicon, sapphire, silica and glass in the Terahertz range," Latin America Optics and Photonics Conference, Optical Society of America, pp. LT4C-1, 2012. [
DOI:10.1364/LAOP.2012.LT4C.1]
23. K. Maussang, A. Brewer, J. Palomo, J.M. Manceau, R. Colombelli, I. Sagnes, J. Mangeney, J. Tignon, and S.S. Dhillon, "Echo-less photoconductive antenna sources for high-resolution terahertz time-domain spectroscopy," IEEE Trans. Terahertz Science Technol. Vol. 6, pp. 20-25, 2015. [
DOI:10.1109/TTHZ.2015.2504794]