Volume 17, Issue 2 (Summer-Fall 2023)                   IJOP 2023, 17(2): 229-238 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Janfaza M, Moradi H, Jalil A. Increasing the Signal-to-Noise Ratio in Underwater Distributed Optical Fiber Acoustic Sensor. IJOP 2023; 17 (2) :229-238
URL: http://ijop.ir/article-1-562-en.html
1- Department of Electrical Engineering, Faculty of Engineering, Higher Education Complex of Saravan, Saravan, I.R. Iran
2- Faculty of Electrical Engineering, Sharif University of Technology, Tehran, I.R. Iran
Abstract:   (830 Views)
In this study, we present the findings derived from our simulation and experimental investigation of a distributed optical fiber acoustic sensor. The proposed sensor operates by utilizing the self-interference of Rayleigh backscattering. When the optical pulse propagates through the optical fiber, the phase of the Rayleigh backscattered light changes at the location where the acoustic signal is present. This phase change is then amplified through the self-interference of two Rayleigh backscattered beams in the Michelson interferometer scheme. This study aims to present the Phase Generated Carrier (PGC) demodulation method along with the arctangent function (ATAN) and the Coordinate Rotation Digital Computer (CORDIC) algorithm. This method offers a simple and efficient algorithm for computing hyperbolic and trigonometric functions. The system allows for the detection of acoustic waves caused by sinusoidal disturbances with a spatial resolution of approximately 20 m.
Full-Text [PDF 917 kb]   (328 Downloads)    
Type of Study: Research | Subject: Optical Fiber, Fiber Sensors, and Optical Communications
Received: 2024/06/7 | Revised: 2024/10/12 | Accepted: 2024/10/2 | Published: 2024/10/4

References
1. G. Rajan, Introduction to optical fiber sensors Optical Fiber Sensors: Advanced Techniques and Applications, Rajan, G., Iniewski, K., Eds, p. 1, 2015. [DOI:10.1201/b18074-1]
2. K. Grattan and B. Meggitt, Optical fiber sensor technology: advanced applications-Bragg gratings and distributed sensors, Springer Science & Business Media, 2000. [DOI:10.1007/978-1-4757-6079-8]
3. E. Udd and W.B. Spillman Jr, Fiber optic sensors: an introduction for engineers and scientists, 3rd ed., John Wiley & Sons, 2024. [DOI:10.1002/9781119678892]
4. Y. Zhang, D. Feng, Z. Liu, Z. Guo, X. Dong, K. Chiang, and B.C. Chu, "High-sensitivity pressure sensor using a shielded polymer-coated fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 13, no. 6, pp. 618-619, 2001. [DOI:10.1109/68.924043]
5. F. Wang, X. Zhang, X. Wang, and H. Chen, "Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry," Opt. Lett., Vol. 38, no. 14, pp. 2437-2439, 2013. [DOI:10.1364/OL.38.002437]
6. A. Masoudi, M. Belal, and T.P. Newson, "Distributed optical fibre audible frequency sensor," 23rd International Conference on Optical Fibre Sensors, Vol. 9157: SPIE, pp. 537-540, 2014. [DOI:10.1117/12.2058484]
7. A. Owen, G. Duckworth, and J. Worsley, "OptaSense: Fibre optic distributed acoustic sensing for border monitoring," European Intelligence and Security Informatics Conference, IEEE, pp. 362-364, 2012. [DOI:10.1109/EISIC.2012.59]
8. D. Chen, Q. Liu, and Z. He, "Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR," Opt. Express, Vol. 25, no. 7, pp. 8315 8325, 2017. [DOI:10.1364/OE.25.008315]
9. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, "The Development of an φ-OTDR System for Quantitative Vibration Measurement," IEEE Photon. Technol. Lett., Vol. 27, no. 12, pp. 1349-1352, 2015. [DOI:10.1109/LPT.2015.2421354]
10. M. Janfaza, H. Moradi, and M. Maleki, "Investigation of 2D materials effect on few-mode fiber optical temperature and strain sensors," Int. J. Opt. Photon., Vol. 15, no. 2, pp. 167-178, 2021. [DOI:10.52547/ijop.15.2.167]
11. M. Moccia, M. Consales, A. Iadicicco, M. Pisco, A. Cutolo, V. Galdi, and A. Cusano, "Resonant hydrophones based on coated fiber Bragg gratings," J. Lightwave Technol., Vol. 30, no. 15, pp. 2472-2481, 2012. [DOI:10.1109/JLT.2012.2200233]
12. P.M. Junghare, C.P. Raj P, T. Srinivas, and P. Sharan, "A Finite Element Analysis of Fiber Optic Acoustic Sensing Mandrel for Acoustic pressure with Increased Sensitivity," Am. J. Eng. Research, Vol. 2, no. 9, pp. 1-7, 2013.
13. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A.O. Bjarklev, "All-silica hollow-core microstructured Bragg fibers for biosensor application," IEEE Sensors J., Vol. 8, no. 7, pp. 1280-1286, 2008. [DOI:10.1109/JSEN.2008.926969]
14. A. Leung, P.M. Shankar, and R. Mutharasan, "A review of fiber-optic biosensors," Sensors Actuators B: Chem., Vol. 125, no. 2, pp. 688 703, 2007. [DOI:10.1016/j.snb.2007.03.010]
15. O. Wolfoeis, Fibre Optic Chemical Sensors, Vols. I & II, ed: CRC Press Boca Raton, FL, 1991.
16. Q. Chen, C. Jin, Y. Bao, Z. Li, J. Li, C. Lu, L. Yang, and G. Li, "A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer," Opt. Express, Vol. 22, no. 3, pp. 2167-2173, 2014. [DOI:10.1364/OE.22.002167]
17. S. Liang, X. Sheng, S. Lou, P. Wang, and Y. Zhang, "Novel Lissajous figure-based location method for fiber-optic distributed disturbance sensor," Int. J. Light Electron Opt. (Optik), Vol. 126, no. 23, pp. 4362-4366, 2015. [DOI:10.1016/j.ijleo.2015.07.203]
18. H.F. Martins, S. Martin-Lopez, P. Corredera, M.L. Filograno, O. Frazao, and M. Gonzalez-Herráez, "Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over> 100 km," J. Lightwave Technol., Vol. 32, no. 8, pp. 1510-1518, 2014. [DOI:10.1109/JLT.2014.2308354]
19. Y. Shang, Y. Yang, C. Wang, X. Liu, C. Wang, and G. Peng, "Optical fiber distributed acoustic sensing based on the self-interference of Rayleigh backscattering," Measurement, Vol. 79, pp. 222-227, 2016. [DOI:10.1016/j.measurement.2015.09.042]
20. Y. Shang, Y.-H. Yang, C. Wang, X.-H. Liu, C. Wang, and G.-D. Peng, "Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system," Measurement Sci. Technol., Vol. 27, no. 6, pp. 065201(1-9), 2016. [DOI:10.1088/0957-0233/27/6/065201]
21. N. Lagakos, T. Hickman, P. Ehrenfeuchter, J. A. Bucaro, and A. Dandridge, "Planar flexible fiber-optic acoustic sensors," J. Lightwave Technol., Vol. 8, no. 9, pp. 1298-1303, 1990. [DOI:10.1109/50.59156]
22. G. Hocker, "Fiber-optic acoustic sensors with increased sensitivity by use of composite structures," Opt. Lett., Vol. 4, no. 10, pp. 320 321, 1979. [DOI:10.1364/OL.4.000320]
23. M. Imai, T. Ohashi, and Y. Ohtsuka, "Fiber-optic Michelson interferometer using an optical power divider," Opt. Lett., Vol. 5, no. 10, pp. 418-420, 1980. [DOI:10.1364/OL.5.000418]
24. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, "Dual Michelson interferometers for distributed vibration detection," Appl. Opt., Vol. 50, no. 22, pp. 4333-4338, 2011. [DOI:10.1364/AO.50.004333]
25. H. Moradi, F. Hosseinibalam, and S. Hassanzadeh, "Simulation and experimental investigation about interferometric optical fiber acoustic sensor for sensitivity enhancement," Measurement, Vol. 137, pp. 556-561, 2019. [DOI:10.1016/j.measurement.2019.01.073]
26. H. Moradi, F. Hosseinibalam, and S. Hassanzadeh, "Improving the signal-to-noise ratio in a fiber-optic Fabry-Pérot acoustic sensor," Laser Phys. Lett., Vol. 16, no. 6, pp. 065106(1-8), 2019. [DOI:10.1088/1612-202X/ab1840]
27. H. Moradi, P. Parvin, F. Shahi, and A. Ojaghloo, "Fiber optic Fabry-Pérot acoustic sensor using PVC and GO diaphragms," OSA Continuum, Vol. 3, no. 4, pp. 943-951, 2020. [DOI:10.1364/OSAC.391342]
28. A. Dandridge, A.B. Tveten, and T.G. Giallorenzi, "Homodyne demodulation scheme for fiber optic sensors using phase generated carrier," IEEE Trans. Microwave Theory Tech., Vol. 30, no. 10, pp. 1635-1641, 1982. [DOI:10.1109/TMTT.1982.1131302]
29. A. Masoudi, M. Beresna, and G. Brambilla, "152 km-range single-ended distributed acoustic sensor based on inline optical amplification and a micromachined enhanced-backscattering fiber," Opt. Lett., Vol. 46, no. 3, pp. 552-555, 2021. [DOI:10.1364/OL.413206]
30. A. Masoudi and T.P. Newson, "High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution," Opt. Lett., Vol. 42, no. 2, pp. 290-293, 2017. [DOI:10.1364/OL.42.000290]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb