1. M. Testa-Anta, M.A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias, and V. Salgueiriño, "Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications," Nanoscale Adv., Vol. 1, pp. 2086-2103, 2019. [
DOI:10.1039/C9NA00064J] [
PMID] [
]
2. P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," Laser, Vol. 21, pp. 24 38, 2016.
3. A. Saletnik, B. Saletnik, and C. Puchalski, "Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues," Molecules, Vol. 26, Issue. 6 pp. 1537-1352, 2021. [
DOI:10.3390/molecules26061537] [
PMID] [
]
4. A. Silver, H. Kitadai, H. Liu, T. Granzier-Nakajima, M. Terrones, X. Ling, and S. Huang, "Chemical and biosensing using graphene-enhanced Raman spectroscopy," J. Nanomater., Vol. 9, pp. 516- 535, 2019. [
DOI:10.3390/nano9040516] [
PMID] [
]
5. L. Yu and R. Lv, "Two-dimensional layer materials for highly efficient molecular sensing based on surface-enhanced Raman scattering," New Carbon Mater., Vol. 36, pp. 995-1012, 2021. [
DOI:10.1016/S1872-5805(21)60098-5]
6. E.B. Barros and M.S. Dresselhaus, "Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy," Phys. Rev. X, Vol. 4, pp. 570-578, 2014. [
DOI:10.1103/PhysRevB.90.035443]
7. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett., Vol. 10, pp. 8-16, 2010. [
DOI:10.1021/nl903414x] [
PMID]
8. P. Ren, E. Pu, D. Liu, Y. Wang, B. Xiang, and X. Ren, "Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy," Mater. Lett., Vol. 204, pp. 65 68, 2017. [
DOI:10.1016/j.matlet.2017.05.124]
9. G. Faggio, G.G. Politano, N. Lisi, A. Capasso, and G. Messina, "The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy," J. Phys: Condensed Matter., Vol. 36, no. 19, pp. 195303-195309, 2024. [
DOI:10.1088/1361-648X/ad238a] [
PMID]
10. T. Suwunwong, P. Patho, P. Choto, and K. Phoungthong, "Enhancement the rhodamine 6G adsorption property on Fe3O4-composited biochar derived from rice husk," Mater. Res. Express, Vol. 7, no. 2, pp. 025511(1-14), 2020. [
DOI:10.1088/2053-1591/ab6b58]
11. I.M. Chou and A. Wang, "Application of laser Raman micro-analyses to Earth and planetary materials," J. Asian Earth Sci, Vol. 145, pp. 309-333, 2017. [
DOI:10.1016/j.jseaes.2017.06.032]
12. S. Thakkar, L. De Luca, S. Gaspa, A. Mariani, S. Garroni, A. Iacomini, L. Stagi, and P. Innocenzi, "Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection," ACS Omega, Vol. 7, pp. 5670-5678, 2022. [
DOI:10.1021/acsomega.1c04863] [
PMID] [
]
13. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman. C.S. Khe, U. Hashim, and H. C. Lee, "Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization," AIP Publishing, Vol. 1892, pp. 44-60, 2017. [
DOI:10.1063/1.5005764]
14. D.T. Nurrohman and N.F. Chiu, "A review of graphene-based surface plasmon resonance and surface-enhanced Raman scattering biosensors: Current status and future prospects," J. Nanomater., Vol. 11, pp. 216 236, 2021. [
DOI:10.3390/nano11010216] [
PMID] [
]
15. V. Valeš, K. Drogowska-Horná, V.L.P. Guerra, and M. Kalbáč, "Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene," Sci. Rep., Vol. 10, pp. 4516-4524, 2020. [
DOI:10.1038/s41598-020-60857-y] [
PMID] [
]
16. S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, "Is chemically synthesized graphene really a unique substrate for SERS and fluorescence quenching?" Sci. Rep., Vol. 3, pp. 3336-3341, 2013. [
DOI:10.1038/srep03336] [
PMID] [
]
17. C. Wu, E. Chen, and J. Wei, "Surface-enhanced Raman spectroscopy of Rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles," COLL SURF A: Physicochemical Eng. Aspects, Vol. 506, pp. 450-456, 2016. [
DOI:10.1016/j.colsurfa.2016.07.020]
18. A. de Barros, F.M. Shimizu, C.S. de Oliveira, F.A. Sigoli, D.P. dos Santos, and I.O. Mazali, "Dynamic behavior of surface-enhanced Raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions," ACS Appl. Nano Mater., Vol. 3, pp. 8138-8147, 2020. [
DOI:10.1021/acsanm.0c01530]
19. M. Verma, A. Kedia, M.B. Newmai, and P.S. Kumar, "Differential role of PVP on the synthesis of plasmonic gold nanostructures and their catalytic and SERS properties," RSC Adv., Vol. 6, pp. 80342-80353, 2016. [
DOI:10.1039/C6RA18345J]
20. M.V. Canamares, C. Chenal, R.L. Birke, and J.R. Lombardi. "DFT, SERS, and single-molecule SERS of crystal violet," J. Phys. Chem. C, Vol. 112, pp. 20295-20300, 2008. [
DOI:10.1021/jp807807j]
21. E.J. Liang, X.L. Ye, and W Kiefer, "Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation," J. Phys. Chem. A, Vol. 101, pp. 7330-7335, 1997. [
DOI:10.1021/jp971960j]
22. P. Khurana, S. Thatai, P. Wang, P. Lihitkar, L. Zhang, Y. Fang, and S.K. Kulkarni, "Speckled SiO2@ Au core-shell particles as surface-enhanced Raman scattering probes," Plasmonics, Vol. 8, pp. 185-191, 2013. [
DOI:10.1007/s11468-012-9374-0]
23. K. Lai, Y. Zhang, R. Du, F. Zhai, B.A. Rasco, and Y. Huang, "Determination of chloramphenicol and crystal violet with surface-enhanced Raman spectroscopy," Sens. Instrum. Food Qual. Saf., Vol. 5, pp. 19-24, 2011. [
DOI:10.1007/s11694-011-9106-8]