Volume 18, Issue 1 (10-2024)                   IJOP 2024, 18(1): 3-10 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bahreini M, Sabzevari Z. Enhancement of Rhodamine 6G and Crystal Violet Raman Spectrum Peaks by Graphene-Enhanced Raman Spectroscopy. IJOP 2024; 18 (1) :3-10
URL: http://ijop.ir/article-1-551-en.html
1- School of Physics, Iran University of Science and Technology, Tehran, Iran
Abstract:   (487 Views)
Due to the unique properties of graphene, since its discovery, many applications in different fields from chemical sensors to transistors have been proposed for it. One of the most important applications of graphene is in the enhancement of Raman spectroscopy, which has recently attracted the attention of scientists. This article investigates its potential as a substrate for Raman enhancement called graphene-enhanced Raman spectroscopy (GERS). We use rhodamine 6G (R6G) and crystal violet (CV) to illustrate the effect of graphene oxide on Raman enhancement. It was shown that Raman peaks of rhodamine 6G and crystal violet solutions deposited by solution soaking on the graphene-based substrate have significantly increased compared to those deposited on the bare glass substrate. Using a Raman spectrometer, The Raman spectra of these materials were taken and their graphs were compared. It is shown that this method can enhance the Raman signals of molecules of rhodamine 6G and crystal violet.
Full-Text [PDF 660 kb]   (365 Downloads)    
Type of Study: Research | Subject: Spectroscopy
Received: 2024/02/5 | Revised: 2024/11/12 | Accepted: 2024/10/3 | Published: 2024/10/5

References
1. M. Testa-Anta, M.A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias, and V. Salgueiriño, "Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications," Nanoscale Adv., Vol. 1, pp. 2086-2103, 2019. [DOI:10.1039/C9NA00064J] [PMID] []
2. P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," Laser, Vol. 21, pp. 24 38, 2016.
3. A. Saletnik, B. Saletnik, and C. Puchalski, "Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues," Molecules, Vol. 26, Issue. 6 pp. 1537-1352, 2021. [DOI:10.3390/molecules26061537] [PMID] []
4. A. Silver, H. Kitadai, H. Liu, T. Granzier-Nakajima, M. Terrones, X. Ling, and S. Huang, "Chemical and biosensing using graphene-enhanced Raman spectroscopy," J. Nanomater., Vol. 9, pp. 516- 535, 2019. [DOI:10.3390/nano9040516] [PMID] []
5. L. Yu and R. Lv, "Two-dimensional layer materials for highly efficient molecular sensing based on surface-enhanced Raman scattering," New Carbon Mater., Vol. 36, pp. 995-1012, 2021. [DOI:10.1016/S1872-5805(21)60098-5]
6. E.B. Barros and M.S. Dresselhaus, "Theory of Raman enhancement by two-dimensional materials: Applications for graphene-enhanced Raman spectroscopy," Phys. Rev. X, Vol. 4, pp. 570-578, 2014. [DOI:10.1103/PhysRevB.90.035443]
7. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M.S. Dresselhaus, J. Zhang, and Z. Liu, "Can graphene be used as a substrate for Raman enhancement?" Nano Lett., Vol. 10, pp. 8-16, 2010. [DOI:10.1021/nl903414x] [PMID]
8. P. Ren, E. Pu, D. Liu, Y. Wang, B. Xiang, and X. Ren, "Fabrication of nitrogen-doped graphenes by pulsed laser deposition and improved chemical enhancement for Raman spectroscopy," Mater. Lett., Vol. 204, pp. 65 68, 2017. [DOI:10.1016/j.matlet.2017.05.124]
9. G. Faggio, G.G. Politano, N. Lisi, A. Capasso, and G. Messina, "The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy," J. Phys: Condensed Matter., Vol. 36, no. 19, pp. 195303-195309, 2024. [DOI:10.1088/1361-648X/ad238a] [PMID]
10. T. Suwunwong, P. Patho, P. Choto, and K. Phoungthong, "Enhancement the rhodamine 6G adsorption property on Fe3O4-composited biochar derived from rice husk," Mater. Res. Express, Vol. 7, no. 2, pp. 025511(1-14), 2020. [DOI:10.1088/2053-1591/ab6b58]
11. I.M. Chou and A. Wang, "Application of laser Raman micro-analyses to Earth and planetary materials," J. Asian Earth Sci, Vol. 145, pp. 309-333, 2017. [DOI:10.1016/j.jseaes.2017.06.032]
12. S. Thakkar, L. De Luca, S. Gaspa, A. Mariani, S. Garroni, A. Iacomini, L. Stagi, and P. Innocenzi, "Comparative Evaluation of Graphene Nanostructures in GERS Platforms for Pesticide Detection," ACS Omega, Vol. 7, pp. 5670-5678, 2022. [DOI:10.1021/acsomega.1c04863] [PMID] []
13. N.M.S. Hidayah, W.W. Liu, C.W. Lai, N.Z. Noriman. C.S. Khe, U. Hashim, and H. C. Lee, "Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization," AIP Publishing, Vol. 1892, pp. 44-60, 2017. [DOI:10.1063/1.5005764]
14. D.T. Nurrohman and N.F. Chiu, "A review of graphene-based surface plasmon resonance and surface-enhanced Raman scattering biosensors: Current status and future prospects," J. Nanomater., Vol. 11, pp. 216 236, 2021. [DOI:10.3390/nano11010216] [PMID] []
15. V. Valeš, K. Drogowska-Horná, V.L.P. Guerra, and M. Kalbáč, "Graphene-enhanced Raman scattering on single layer and bilayers of pristine and hydrogenated graphene," Sci. Rep., Vol. 10, pp. 4516-4524, 2020. [DOI:10.1038/s41598-020-60857-y] [PMID] []
16. S. Sil, N. Kuhar, S. Acharya, and S. Umapathy, "Is chemically synthesized graphene really a unique substrate for SERS and fluorescence quenching?" Sci. Rep., Vol. 3, pp. 3336-3341, 2013. [DOI:10.1038/srep03336] [PMID] []
17. C. Wu, E. Chen, and J. Wei, "Surface-enhanced Raman spectroscopy of Rhodamine 6G on agglomerates of different-sized silver truncated nanotriangles," COLL SURF A: Physicochemical Eng. Aspects, Vol. 506, pp. 450-456, 2016. [DOI:10.1016/j.colsurfa.2016.07.020]
18. A. de Barros, F.M. Shimizu, C.S. de Oliveira, F.A. Sigoli, D.P. dos Santos, and I.O. Mazali, "Dynamic behavior of surface-enhanced Raman spectra for rhodamine 6G interacting with gold nanorods: implication for analyses under wet versus dry conditions," ACS Appl. Nano Mater., Vol. 3, pp. 8138-8147, 2020. [DOI:10.1021/acsanm.0c01530]
19. M. Verma, A. Kedia, M.B. Newmai, and P.S. Kumar, "Differential role of PVP on the synthesis of plasmonic gold nanostructures and their catalytic and SERS properties," RSC Adv., Vol. 6, pp. 80342-80353, 2016. [DOI:10.1039/C6RA18345J]
20. M.V. Canamares, C. Chenal, R.L. Birke, and J.R. Lombardi. "DFT, SERS, and single-molecule SERS of crystal violet," J. Phys. Chem. C, Vol. 112, pp. 20295-20300, 2008. [DOI:10.1021/jp807807j]
21. E.J. Liang, X.L. Ye, and W Kiefer, "Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation," J. Phys. Chem. A, Vol. 101, pp. 7330-7335, 1997. [DOI:10.1021/jp971960j]
22. P. Khurana, S. Thatai, P. Wang, P. Lihitkar, L. Zhang, Y. Fang, and S.K. Kulkarni, "Speckled SiO2@ Au core-shell particles as surface-enhanced Raman scattering probes," Plasmonics, Vol. 8, pp. 185-191, 2013. [DOI:10.1007/s11468-012-9374-0]
23. K. Lai, Y. Zhang, R. Du, F. Zhai, B.A. Rasco, and Y. Huang, "Determination of chloramphenicol and crystal violet with surface-enhanced Raman spectroscopy," Sens. Instrum. Food Qual. Saf., Vol. 5, pp. 19-24, 2011. [DOI:10.1007/s11694-011-9106-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb