1. W.Cai,A.L.Moore,Y.Zhu,X.Li,S.Chen,L. Shi, and R.S. Ruoff, "Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition," Nano Lett. Vol. 10, pp. 1645-1651, 2010. [
DOI:10.1021/nl9041966]
2. L. Liu, H. Yao, H. Li, Z. Wang, and Y. Shi, "Recent advances of low-dimensional materials in lasing applications," FlatChem, Vol. 10, pp. 22-38, 2018. [
DOI:10.1016/j.flatc.2018.09.001]
3. M. Nurunnabi and J. McCarthy, Biomedical applications of graphene and 2D nanomaterials, Elsevier, Cambridge, CA, 2019.
4. Z.Zhang,Y.Xie,Y.Ouyang,andY.Chen,"A systematic investigation of thermal conductivities of transition metal dichalcogenides," Int. J. Heat Mass Transf. Vol. 108, pp. 417-422, 2017. [
DOI:10.1016/j.ijheatmasstransfer.2016.12.041]
5. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P.J. King, U. Khan, K. Young, A.Gaucher, S. De, R. J. Smith,"Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, Vol. 331, pp. 568- 571, 2011. [
DOI:10.1126/science.1194975]
6. A. Ahmadi and M.Z. Shoushtari, "Enhancing the photoelectrochemical water splitting performance of WS2 nanosheets by doping titanium and molybdenum via a low temperature CVD method," J. Electroanal. Chem. Vol. 849, pp. 113361 (1-8), 2019. [
DOI:10.1016/j.jelechem.2019.113361]
7. W. Yin, X. Bai, P. Chen, X. Zhang, L. Su, C. Ji, H. Gao, H. Song, and W.W. Yu, "Rational control of size and photoluminescence of WS2 quantum dots for white light-emitting diodes," ACS Appl. Mater. Interfaces, Vol. 10, pp. 43824-43830, 2018. [
DOI:10.1021/acsami.8b17966]
8. O.Y. Posudievsky, O.A. Khazieieva, A.S. Kondratyuk, V.V. Cherepanov, G.I.Dovbeshko, V .G. Koshechko, and V .D. Pokhodenko,"Liquid exfoliation of mechanochemically nanostructured tungsten disulfide to a graphene-like state,” Nanotechnology, Vol. 29, pp. 085704 (1-7), 2018.
9. mechanochemically nanostructured tungsten disulfide to a graphene-like state," Nanotechnology, Vol. 29, pp. 085704 (1-7), 2018. [
DOI:10.1088/1361-6528/aaa381]
10. Z. Cai, B. Liu, X. Zou, H. and M. Cheng, "Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures," Chem. Rev. Vol. 118, pp. 6091-6133, 2018. [
DOI:10.1021/acs.chemrev.7b00536]
11. H. Yan, J. Li, D. Liu, X. Jing, D. Wang, and L. Meng, "Controlled preparation of high quality WS 2 nanostructures by a microwave-assisted solvothermal method," Cryst. Eng. Comm. Vol. 20, pp. 2324-2330, 2018. [
DOI:10.1039/C8CE00057C]
12. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, "Synthesis and optical properties of large‐area single‐ crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition," Adv. Opt. Mater. Vol. 2, pp. 131-136, 2014. [
DOI:10.1002/adom.201300428]
13. N. Peimyoo, J. Shang, W. Yang, Y. Wang, C. Cong, and T. Yu, "Thermal conductivity determination of suspended mono-and bilayer WS 2 by Raman spectroscopy," Nano Res. Vol. 8, pp. 1210-1221, 2015. [
DOI:10.1007/s12274-014-0602-0]
14. M.A. Dwiputra, F. Fadhila, C. Imawan, and V. Fauzia, "The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure," Sens. Actuators B Chem. Vol. 310, pp. 127810 (1-13), 2020. [
DOI:10.1016/j.snb.2020.127810]
15. D. Liu, Z. Tang, and Z. Zhang, "Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets," Sens. Actuators B Chem. Vol. 303, pp. 127114 (1-7), 2020. [
DOI:10.1016/j.snb.2019.127114]
16. B. Rai, P.V. Sarma, V. Srinivasan, M.M. Shaijumon, and S.S. Ramamurthy, "Engineering of Exciton-Plasmon Coupling Using 2D-WS2 Nanosheets for 1000-Fold Fluorescence Enhancement in Surface Plasmon-Coupled Emission Platforms," Langmuir, Vol. 37, pp. 1954-1960, 2021. [
DOI:10.1021/acs.langmuir.0c03465]
17. J. Li, J. Han, H. Li, X. Fan, and K. Huang, "Large-area, flexible broadband photodetector based on WS2 nanosheets films" Mater Sci Semicond Process,Vol. 107, pp. 104804 (1-6), 2020. [
DOI:10.1016/j.mssp.2019.104804]
18. S.J. Varma, J. Kumar, Y. Liu, K. Layne, J. Wu, C. Liang, Y. Nakanishi, A. Aliyan, W. Yang, and P.M. Ajayan, "2D TiS2 layers: a superior nonlinear optical limiting material," Adv. Opt. Mater. Vol. 5, pp. 1700713 (1-9), 2017. [
DOI:10.1002/adom.201700713]
19. J. Jadczak, L. Bryja, J. Kutrowska-Girzycka, P. Kapuściński, M. Bieniek, Y. Huang, and P. Hawrylak, "Room-temperature multi-phonon upconversion photoluminescence in monolayer semiconductor WS2," SPIE OPTO, 2020, California, USA, Vol. 112980K, pp. 1-10, 2020. [
DOI:10.1038/s41467-018-07994-1]
20. T. Beechem, L. Yates, and S. Graham, "Invited Review Article: Error and uncertainty in Raman thermal conductivity measurements," Rev. Sci. Instrum. Vol. 86, pp. 041101 (1-11), 2015. [
DOI:10.1063/1.4918623]
21. A.A. Graf, Physical and chemical characterisation of exfoliated layered nanomaterials, PhD Diss. University of Sussex, 2020.
22. S. Sandell, E. Chavez-Angel, A. El Sachat, J. He, C.M. Sotomayor Torres, and J. Maire, "Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures," J. Appl. Phys. Vol. 128, pp. 131101 (1-25), 2020. [
DOI:10.1063/5.0020239]
23. S.E. Bialkowski, N.G. Astrath, and M.A. Proskurnin, Photothermal Spectroscopy Methods, John Wiley & Sons, 2019. [
DOI:10.1002/9781119279105]
24. H. Cabrera, D. Mendoza, J. Benítez, C.B. Flores, S. Alvarado, and E. Marín, "Thermal diffusivity of few-layers graphene measured by an all-optical method," J. Phys. D, Vol. 48, pp. 465501 (1-5), 2015. [
DOI:10.1088/0022-3727/48/46/465501]
25. M. Proskurnin, D. Volkov, T. Gor'kova, S. Bendrysheva, A. Smirnova, and D. Nedosekin, "Advances in thermal lens spectrometry," J. Anal. Chem. Vol. 70, pp. 249-276, 2015. [
DOI:10.1134/S1061934815030168]
26. A. Smirnova, M.A. Proskurnin, K. Mawatari, and T. Kitamori, "Desktop near‐field thermal‐ lens microscope for thermo‐optical detection in microfluidics," Electrophoresis, Vol. 33, pp. 2748-2751, 2012. [
DOI:10.1088/1555-6611/ab0a66]
27. H. Ono, K. Takeda, and K. Fujiwara, "Thermal lens produced in a nematic liquid crystal," Appl. Spectrosc. Vol. 49, pp. 1189-1192, 1995. [
DOI:10.1366/0003702953965083]
28. M. Liu and M. Franko, "Thermal lens spectrometry: still a technique on the horizon?," Int. J. Thermophys. Vol. 37, pp. 1- 16, 2016. [
DOI:10.1007/s10765-016-2072-y]
29. M. Galkin, Y .V . Ageeva, D. Nedosekin, M. Proskurnin, A.Y. Olenin, and G. Mokrousov, "Thermal lens spectrometry for the synthesis and study of nanocomposites on the basis of silver salts absorbed by a polyacrylate matrix," Mosc. Univ. Chem. Bull. Vol. 65, pp. 91-97, 2010. [
DOI:10.3103/S0027131410020070]
30. J. Shen, R.D. Lowe, and R.D. Snook, "A model for cw laser induced mode-mismatched dual- beam thermal lens spectrometry," Chem. Phys. Vol. 165, pp. 385-396, 1992. [
DOI:10.1016/0301-0104(92)87053-C]
31. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, and T. Catunda, "Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement," J. Opt. Soc. Amer. B, Vol. 23, pp. 1408-1413, 2006. [
DOI:10.1364/JOSAB.23.001408]
32. M. Chowdhury, K.S. Rahman, V. Selvanathan, A.M. Hasan, M. Jamal, N.A. Samsudin, M. Akhtaruzzaman, N. Amin, and K. Techato, "Recovery of FTO coated glass substrate via environment-friendly facile recycling perovskite solar cells," RSC Adv. Vol. 11, pp. 14534-14541, 2021. [
DOI:10.1039/D1RA00338K]
33. Source: Web Elements [http://www.webelements.com/]
34. S. Qiao, H. Yang, Z. Bai, G. Peng, and X. Zhang, Identifying the number of WS2 layers via Raman and photoluminescence spectrum, Atlantis Press. Pp. 1408-1413, 2017. [
DOI:10.2991/icmmcce-17.2017.247]
35. A. Ahmadi, M.Z. Shoushtari, and M. Farbod, "Photoelectrochemical application of WS 2 nanosheets prepared via a low-temperature CVD method," J. Mater. Sci.: Mater. Electron. Vol. 30, pp. 6342-6349, 2019. [
DOI:10.1007/s10854-019-00936-7]
36. F. Wang, Raman and Photoluminescence Spectroscopic Studies of the Micromechanics of WS2 Nanocomposites, The University of Manchester (United Kingdom), PhD Diss. 2018.
37. M. Benitez, A. Marcano, and N. Melikechi, "Thermal diffusivity measurement using the mode-mismatched photothermal lens method," Opt. Eng. Vol. 48, pp. 043604 (1-8), 2009. [
DOI:10.1117/1.3119306]
38. J. Liu, G-M. Choi, and D.G. Cahill, "Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect" J. Appl. Phys. Vol. 116, pp. 233107 (1-6), 2014. [
DOI:10.1063/1.4904513]
39. J.-Y. Kim, S.-M. Choi, W.-S. Seo, and W.-S. Cho, "Thermal and electronic properties of exfoliated metal chalcogenides," Bulletin Kor. Chem. Soc. Vol. 31, pp. 3225-3227, 2010. [
DOI:10.5012/bkcs.2010.31.11.3225]
40. X. Zhang, D. Sun, Y. Li, G-H. Lee, X. Cui, D. Chenet, Y. You, T.F. Heinz, and J.C. Hone, "Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique," ACS Appl. Mater. Interfaces. Vol. 7, pp. 25923-25929, 2015. [
DOI:10.1021/acsami.5b08580]
41. Y. Zhang, Q. Lv, A. Fan, L. Yu, H. Wang, W. Ma, X. Zhang, and R. Lv, "Substrate effect on thermal conductivity of monolayer WS2: Experimental measurement and theoretical analysis,". arXiv preprint arXiv, Vol. 2108, pp. 13252 (1-33), 2021.
42. Y. Zhang, Q. Lv, A. Fan, L. Yu, H. Wang, W. Ma, R. Lv, and X. Zhang, "Reduction in thermal conductivity of monolayer WS2 caused by substrate effect," Nano Res. pp. 1-10, 2022. [
DOI:10.1007/s12274-022-4560-7]
43. R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, and H.G. Xing, "Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy," ACS Nano, Vol. 8, pp. 986-993, 2014. [
DOI:10.1021/nn405826k]
44. J. Habainy, Y. Dai, Y. Lee, and S. Iyengar, "Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa," J. Nucl. Mater. Vol. 509, pp. 152-157, 2018. [
DOI:10.1016/j.jnucmat.2018.06.041]