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ABSTRACT— In this paper Kolomogorov 
entropy of a simulated cavity quantum 
electrodynamics in a multi-partite system 
consisting of eight quantum dots in interaction 
with one cavity mode has been estimated. It has 
been shown that the Kolmogorov Entropy 
monotonically increases with the increasing 
coupling strength, which is a sufficient 
condition for chaotic behavior under 
ultrastrong coupling regime. The arrangement 
of the quantum dots is assumed to be in the 
form of a linear chain where dipole-dipole 
interactions are considered only between the 
nearest neighbors. 
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I. INTRODUCTION 
Entanglement has recently evolved to a major 
research topic in the field of theoretical and 
experimental Cavity Quantum 
Electrodynamics (CQED), because of its 
various potential applications in quantum 
computing, quantum information, and 
quantum communications. CQED describes 
the physical interactions between the quantum 
optical systems and confined light in the 
cavities [1]. Entanglement in multi-partite 
systems, for instance, has been shown its 
usefulness for switching between linear optical 
networks [2]. Therefore, a through study of 
this quantum phenomena is essential for 
getting insight into the fundamental design and 
operation of future entanglement-based 
quantum devices. 

Recently, some advances have been made in 
the study of multi-partite quantum systems. In 
[3], for example, an exact description of 
electronic wave functions in solids has been 
proposed, which had been otherwise supposed 
to be impossible in the past. But, to the best 
knowledge of the authors, the most complete 
simulation of multi-partite quantum systems 
has been achieved on a physical diamond 
substrate [4], which requires sophisticated 
fabrication and measurement technologies. 
Hence, numerical simulations are essential. 

In a new work of the authors [5], we have 
succeeded in devising an elaborate numerical 
simulation package, capable of simulating 
arbitrarily complex CQED systems. This work 
has been based on direct solution of the 
Jaynes-Cummings-Paul (JCP) Hamiltonian 
[6,7], using an extension devised in [8] and 
corrections to the Hamiltonian in [9,10].    

We furthermore have successfully simulated a 
real three-level CQED quantum optical system 
designed in an earlier work [11], in interaction 
with one cavity mode. Also, simulation of a 
more complex quantum system with six 
quantum dots [5] and nine quantum dots [12] 
have been successfully studied by using this 
software under different coupling regimes.  

We have noticed that under the so-called 
ultrastrong coupling regime, where the typical 
Rabi frequencies are comparable to, or at least 
of the order of, the atomic transition 
frequencies, a chaotic behavior starts to 
develop in all partitions of the multi-partite 
quantum systems. 
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Quantum chaos has been so far observed in 
optical [13], microwave [14], and nano-
photonic [15] quantum systems. However, 
little information exists on how to rigorously 
calculate the measure of chaotic behavior in 
such systems. 

Here, we show that the Kolmogorov entropy, 
denoted by K2, is a fairly convenient measure 
[16] to calculate the quantum chaos in systems 
such as multi-partite CQED. We present the 
discussion by simulating a nine-partition 
chain-like CQED system, comprising of one 
cavity mode in interaction with eight light 
emitters. 

II. SIMULATION 
In this section, we describe the simulated 
system based on the theoretical formulations 
devised in [5, 12]. As depicted in Fig. 1, eight 
identical two-level light emitters are allowed 
to mutually interact in a linear-chain 
configuration through the electrostatic dipole-
dipole interaction, which is limited to the 
nearest neighbors. One photonic mode, which 
may be occupied with a maximum number of 
eight photons, constitutes the field-emitter 
interactions. Such an apparently small 
quantum system, indeed would need a huge 
computation time because the burden of exact 
quantum computations explodes with the 
number of system partitions. 

The most general state-ket of the system 
following the formulation in [8] is given by: 
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(1) 
where A  is the state eigenket describing all 
possible combinations of the field emitters in 
their various eigenstates. rn represents the 
energy level at which the n-th emitter stays. 
Also, f  is the field eigenket of cavity modes. 
For practical reasons in the available 
simulation hardware, we limited the number of 

cavity modes only to one as stated in the 
above, with a maximum occupancy number of 
eight photons [5]. The corresponding 
Hamiltonian is then given by [5]: 
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where 0̂  is the basic Hamiltonian with no 
interaction, ˆ

r E  is the field-emitter interaction 

term, and ˆ
r r  is the dipole-dipole interaction 

terms. nij  are matrix elements of the dipoles 

corresponding to the n-th emitter, and nijg  are 
the interaction strengths between the optical 
field and the n-th emitter via the transition 

between i-th and j-th states. nij  are 
proportional to the induced dipole terms while 
transiting between the i-th and j-th states. 
Finally, n

iE  are the energies of the i-th state for 
the n-th emitter. Selected numerical values are 
enlisted elsewhere [12]. 

 
Fig. 1. Arrangement of quantum dots in the linear 
chain fashion [5]. 

Since, we aimed to study the effect of 
interaction strengths on the chaotic behavior of 
the system, we repeated the same simulation 
for various choices of gnij. Now, employing the 
code [17] developed based on the algorithm 
discussed in [5,12], we may flatten a multi-
dimensional state matrix into a two-
dimensional square matrix, which 
subsequently allows calculation of its 
corresponding eigenvalues and temporal 
solutions of eigenkets. 

We have calculated the occupancy 
probabilities at various emitter and field 
modes for the whole system. However, for the 
sake of brevity we limit the discussion to the 
expectation values of the two photon 
annihilator and atomic transition operators. 
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(c)  
Fig. 2. Expectation values of the Annihilator versus 
time, (a) weak; (b) strong; (c) ultrastrong coupling 
[12].  

It has to be here mentioned that both of these 
two operators are non-Hermitian and their 
expectation values in general yield complex 
numbers, which have no direct physical 

significance. It may not be customary in the 
standard literature of quantum mechanics to 
calculate such non-Hermitian products. 
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Fig. 3. Expectation values of the atomic ladder 
versus time: (a) weak; (b) strong; (c) ultrastrong 
coupling. The general behavior of atomic and field 
expectations are identical under various coupling 
regimes [12]. 
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However, this is exactly what the authors are 
looking for: to successfully define and apply 
an easily-computable scalar variable 
summarizing all internal phase information of 
a multi-partite quantum system. Such phase 
information are preserved only in complex-
valued calculations and are normally missed in 
real-valued Hermitian expectations. However, 
chaos is very evident and easily detectable in 
the phase information, rather than the 
magnitudes. 

These expectations for the field annihilator 
and transition operator of the second emitter 
are given by 
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in which â  is the field annihilator and e

2

g ,̂  is 

the excitation operator belonging to the second 
emitter. 

Figs. 2 and 3 illustrate these values (3, 4) as a 
function of time for various coupling strength. 
As it is evident, by entering into the stronger 
interacting, chaotic behavior starts to develop. 
We have identified the same behavior in all 
studied examples so far [5, 12], too. We also 
extended the dipole-dipole coupling to the 
second and the third neighbors (albeit with 
somewhat diluted strength) and found 
essentially no difference in these observations. 

III. CALCULATION OF K2 ENTROPY 
After computation of the expectation values, 
we obtain a complex time-signal for every 
non-Hermitian product, such as (3, 4). One 
would need a method to mathematically show 
whether the resulting signal is truly chaotic or 
not. 

The perfect solution to this question lies within 
calculation of the second-order Kolmogorov 
entropy, denoted by K2. As it has been shown 

in [16] for a given time-signal, a non-zero K2 
is a sufficient (and not necessary) condition for 
existence of chaos. While K2 is zero for fully 
deterministic signals, it tends to infinity for the 
white noise. The K2 entropy is defined as  
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in which   represents the duration of time-
intervals, and is set to 0.1 in our calculations 
for the normalized time-step. Furthermore, we 
have 
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where N is the length of sample in the signal 
Xj, and Num{·} represents the number of 
arguments satisfying the condition given 
therein. 

In our simulation, N=1500 and =10M was set 
to values ranging from M=0 all the way to 
M=7. The K2 entropy as defined by (5) 
converges to some non-negative real value by 
increasing M, that is smaller values of the 
infinitesimal parameter . Because of the 
particular way in which K2 entropy is defined, 
the signal Xj, being here either of the non-
Hermitian products (3, 4) may be normalized 
to attain values falling within the unit 
imaginary circle. This will help expedite the 
calculation. We developed MATLAB codes 
for calculation of K2 entropy. Illustrated in 
Fig. 4, the algorithm is much simpler than 
what it seems at first. 

The K2 entropy was calculated for the non-
Hermitian products (3) and (4) under various 
coupling regimes. As it is obvious from Fig. 5, 
the K2 entropy is always non-zero, which 
implies chaos. Furthermore, the strength of 
chaotic behavior intensely increases with the 
increase in the strength of interactions. Hence, 
going from the weak to the ultrastrong 
interaction regime, the system fully enters 
chaos. This strange phenomenon has not been 
observed elsewhere to date. 
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(a) 

 
(b) 

Fig. 4. Subroutines used for calculation of K2. 

 
Fig. 5. Calculated Kolmogorov entropy K2 for 
various interaction regimes [12]. 

IV. CONCLUSION 
In this paper, we simulated a nine-partite 
cavity quantum electrodynamic system 
comprising of eight quantum dots and one 
cavity mode. Quantum dots, or field emitters, 
were allowed to undergo mutual dipole-dipole 
interactions with their nearest neighbors, and 
experience field-dipole interactions with the 
confined optical field. We calculated the 
Kolmogorov K2 entropy for signals obtained 
from non-Hermitian products or expectation 
values and assessed the existence of chaos. We 
proved the emergence of quantum chaos under 
the ultrastrong coupling. 
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