2- Quantum BioPhotonics Group, Iranian Center for Quantum Technologies (ICQTs), Tehran, Iran

This paper describes the second-order coherence degree of photons produced in SPDC. First, the nonlinear BBO crystal generates the twin correlated signal and idler photons in the experimental setup. Then, g^{2} (0) is obtained experimentally via Hanbury Brown-Twiss set-up for investigation of the light source nature. The results show this value is less than 1 which verifies the generated photons are in the heralded single photon (HSP) regime.

Type of Study: Research |
Subject:
Quantum Optics, Quantum Communications, Quantom Computing

Received: 2022/08/29 | Revised: 2023/12/7 | Accepted: 2022/12/9 | Published: 2023/02/11

Received: 2022/08/29 | Revised: 2023/12/7 | Accepted: 2022/12/9 | Published: 2023/02/11

1. R.W. Lucky, "Automatic equalization for digital communication," Bell Syst. Tech. J., Vol. 44, pp. 547-588, 1965. [DOI:10.1002/j.1538-7305.1965.tb01678.x]

2. H. Sobhani, M. Khodabande, J.S. Nezamabadi, A. Dadahkhani, and S. Sarshar, "Generation and detection of optical vortices superposition by using interferometer setups," Laser Phys., Vol. 31, pp. 105202 (1-5), 2021. [DOI:10.1088/1555-6611/ac1e2f]

3. M. Beck, Quantum mechanics: theory and experiment, Oxford University Press, pp. 60-85, 2012.

4. J.J. Thorn, M.S. Neel, V.W. Donato, G.S. Bergreen, R.E. Davies, and M. Beck, "Observing the quantum behavior of light in an undergraduate laboratory," Am. J. Phys., Vol. 72, pp. 1210-1219, 2004. [DOI:10.1119/1.1737397]

5. G. Brida, M. Genovese, and C. Novero, "An application of two-photon entangled states to quantum metrology," J. Mod. Opt., Vol. 47, pp. 2099-2104, 2000. [DOI:10.1080/09500340008235132]

6. P. Grangier, G. Roger, and A. Aspect, "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences," SPIE milestone series, EuroPhys. Lett., Vol. 1, pp. 173-179, 1986. [DOI:10.1209/0295-5075/1/4/004]

7. A. Motazedifard, S. A. Madani, and N.S. Vayaghan, "Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits," Opt. Quantum Electron., Vol. 53, pp. 1-26, 2021. [DOI:10.1007/s11082-021-03067-8]

8. A. Motazedifard, S.A. Madani, J.J. Dashkasan, and N.S. Vayaghan, "Nonlocal realism tests and quantum state tomography in Sagnac-based type-II polarization-entanglement SPDC-source," Heliyon, Vol. 7, pp. e07384 (1-8), 2021. [DOI:10.1016/j.heliyon.2021.e07384]

9. A. Motazedifard and S.A. Madani, "High-precision quantum transmittometry of DNA and methylene-blue using a frequency-entangled twin-photon beam in type-I SPDC," OSA Continuum, Vol. 4, pp. 1049-1069, 2021. [DOI:10.1364/OSAC.413830]

10. C. Couteau, "Spontaneous parametric down-conversion," Contemp. Phys., Vol. 59, pp. 1-15, 2018. [DOI:10.1080/00107514.2018.1488463]

11. Y. Peng, Y. Qiao, T. Xiang, and X. Chen, "Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping," Opt. Lett., Vol. 43, pp. 3985-3988, 2018. [DOI:10.1364/OL.43.003985]

12. P.S. Kuo, T. Gerrits, V. Verma, S.W. Nam, O. Slattery, L. Ma, and X. Tang, "Characterization of type-II spontaneous parametric down-conversion in domain-engineered PPLN," Adv. Opt. Photonics Quantum Computing, Memory, Commun., Vol. 9762, pp. 108-116, 2016. [DOI:10.1117/12.2218535]

13. X. Guo, C.L. Zou, C. Schuck, H. Jung , R. Cheng, and H.X. Tang, "Parametric down-conversion photon-pair source on a nanophotonic chip," Sci. Appl., Vol. 6, pp. e16249 (1-8), 2017. [DOI:10.1038/lsa.2016.249]

14. B. Blauensteiner, I. Herbauts, S. Bettelli, A. Poppe, and H. Hübel, "Photon bunching in parametric down-conversion with continuous-wave excitation," Phys. Rev. A, Vol. 79, pp. 063846 (1-6), 2009. [DOI:10.1103/PhysRevA.79.063846]

15. X.S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, "Experimental generation of single photons via active multiplexing," Phys. Rev. A, Vol. 73, pp. 043814 (1-8), 2011.

16. Li, Jiamin, Su . Jie, Cui. Liang, Xie. Tianqi, Z. Y. Ou, and Li, Xiaoying "Generation of pure-state single photons with high heralding efficiency by using a three-stage nonlinear interferometer," Appl. Phys. Lett., Vol. 116, pp. 204002 (1-6), 2020. [DOI:10.1063/5.0003601]

17. J. Flórez, O. Calderón, , A. Valencia, and C.I. Osorio, "Correlation control for pure and efficiently generated heralded single photons," Phys. Rev. A, Vol. 91, pp. 013819 (1-7), 2015. [DOI:10.1103/PhysRevA.91.013819]

18. H. Lotfipour, H. Sobhani, and M. Khodabandeh, "Quantum diagnosis of cancer with heralded single photons," Laser Phys. Lett., Vol. 19, pp. 105603 (1-6), 2022. [DOI:10.1088/1612-202X/ac8bd4]

19. K. Guo, E.N. Christensen, J.B. Christensen, J.G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, "High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide," Appl. Phys. Express, Vol. 10, pp. 062801 (1-5), 2017. [DOI:10.7567/APEX.10.062801]

20. Z.-Y.J. Ou, Multi-photon quantum interference, Springer, Vol. 43, 2007.

21. K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M.F. O'Boyle, B. Fang, V.O. Lorenz, A.B. U'Ren, and P.G. Kwiat, "Joint spectral characterization of photon-pair sources," J. Mod. Opt., Vol. 65, pp. 1141-1160, 2018. [DOI:10.1080/09500340.2018.1437228]

22. N. Lal, A. Banerji, A. Biswas, A. Anwar, and R.P. Singh, "Single photon sources with different spatial modes," arXiv preprint arXiv:1905.01089 (1-7), 2019.

23. B.J. Pearson and D.P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," Am. J. Phys., Vol. 78, pp. 471-484, 2010. [DOI:10.1119/1.3354986]

24. E. Bocquillon, C. Couteau, M. Razavi, R. Laflamme, and G. Weihs, "Coherence measures for heralded single-photon sources," Phys. Rev. A, Vol.79, pp. 035801(1-4), 2009. [DOI:10.1103/PhysRevA.79.035801]

Rights and permissions | |

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |