Volume 16, Issue 2 (Summer-Fall 2022)                   IJOP 2022, 16(2): 145-152 | Back to browse issues page

XML Print

1- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute (NSTRI)
2- Quantum BioPhotonics Group, Iranian Center for Quantum Technologies (ICQTs), Tehran, Iran
Abstract:   (292 Views)
This paper describes the second-order coherence degree of photons produced in SPDC. First, the nonlinear BBO crystal generates the twin correlated signal and idler photons in the experimental setup. Then, g2 (0) is obtained experimentally via Hanbury Brown-Twiss set-up for investigation of the light source nature. The results show this value is less than 1 which verifies the generated photons are in the heralded single photon (HSP) regime.
Full-Text [PDF 483 kb]   (204 Downloads)    
Type of Study: Research | Subject: Quantum Optics, Quantum Communications, Quantom Computing
Received: 2022/08/29 | Revised: 2023/12/7 | Accepted: 2022/12/9 | Published: 2023/02/11

1. R.W. Lucky, "Automatic equalization for digital communication," Bell Syst. Tech. J., Vol. 44, pp. 547-588, 1965. [DOI:10.1002/j.1538-7305.1965.tb01678.x]
2. H. Sobhani, M. Khodabande, J.S. Nezamabadi, A. Dadahkhani, and S. Sarshar, "Generation and detection of optical vortices superposition by using interferometer setups," Laser Phys., Vol. 31, pp. 105202 (1-5), 2021. [DOI:10.1088/1555-6611/ac1e2f]
3. M. Beck, Quantum mechanics: theory and experiment, Oxford University Press, pp. 60-85, 2012.
4. J.J. Thorn, M.S. Neel, V.W. Donato, G.S. Bergreen, R.E. Davies, and M. Beck, "Observing the quantum behavior of light in an undergraduate laboratory," Am. J. Phys., Vol. 72, pp. 1210-1219, 2004. [DOI:10.1119/1.1737397]
5. G. Brida, M. Genovese, and C. Novero, "An application of two-photon entangled states to quantum metrology," J. Mod. Opt., Vol. 47, pp. 2099-2104, 2000. [DOI:10.1080/09500340008235132]
6. P. Grangier, G. Roger, and A. Aspect, "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences," SPIE milestone series, EuroPhys. Lett., Vol. 1, pp. 173-179, 1986. [DOI:10.1209/0295-5075/1/4/004]
7. A. Motazedifard, S. A. Madani, and N.S. Vayaghan, "Measurement of entropy and quantum coherence properties of two type-I entangled photonic qubits," Opt. Quantum Electron., Vol. 53, pp. 1-26, 2021. [DOI:10.1007/s11082-021-03067-8]
8. A. Motazedifard, S.A. Madani, J.J. Dashkasan, and N.S. Vayaghan, "Nonlocal realism tests and quantum state tomography in Sagnac-based type-II polarization-entanglement SPDC-source," Heliyon, Vol. 7, pp. e07384 (1-8), 2021. [DOI:10.1016/j.heliyon.2021.e07384]
9. A. Motazedifard and S.A. Madani, "High-precision quantum transmittometry of DNA and methylene-blue using a frequency-entangled twin-photon beam in type-I SPDC," OSA Continuum, Vol. 4, pp. 1049-1069, 2021. [DOI:10.1364/OSAC.413830]
10. C. Couteau, "Spontaneous parametric down-conversion," Contemp. Phys., Vol. 59, pp. 1-15, 2018. [DOI:10.1080/00107514.2018.1488463]
11. Y. Peng, Y. Qiao, T. Xiang, and X. Chen, "Manipulation of the spontaneous parametric down-conversion process in space and frequency domains via wavefront shaping," Opt. Lett., Vol. 43, pp. 3985-3988, 2018. [DOI:10.1364/OL.43.003985]
12. P.S. Kuo, T. Gerrits, V. Verma, S.W. Nam, O. Slattery, L. Ma, and X. Tang, "Characterization of type-II spontaneous parametric down-conversion in domain-engineered PPLN," Adv. Opt. Photonics Quantum Computing, Memory, Commun., Vol. 9762, pp. 108-116, 2016. [DOI:10.1117/12.2218535]
13. X. Guo, C.L. Zou, C. Schuck, H. Jung , R. Cheng, and H.X. Tang, "Parametric down-conversion photon-pair source on a nanophotonic chip," Sci. Appl., Vol. 6, pp. e16249 (1-8), 2017. [DOI:10.1038/lsa.2016.249]
14. B. Blauensteiner, I. Herbauts, S. Bettelli, A. Poppe, and H. Hübel, "Photon bunching in parametric down-conversion with continuous-wave excitation," Phys. Rev. A, Vol. 79, pp. 063846 (1-6), 2009. [DOI:10.1103/PhysRevA.79.063846]
15. X.S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, "Experimental generation of single photons via active multiplexing," Phys. Rev. A, Vol. 73, pp. 043814 (1-8), 2011.
16. Li, Jiamin, Su . Jie, Cui. Liang, Xie. Tianqi, Z. Y. Ou, and Li, Xiaoying "Generation of pure-state single photons with high heralding efficiency by using a three-stage nonlinear interferometer," Appl. Phys. Lett., Vol. 116, pp. 204002 (1-6), 2020. [DOI:10.1063/5.0003601]
17. J. Flórez, O. Calderón, , A. Valencia, and C.I. Osorio, "Correlation control for pure and efficiently generated heralded single photons," Phys. Rev. A, Vol. 91, pp. 013819 (1-7), 2015. [DOI:10.1103/PhysRevA.91.013819]
18. H. Lotfipour, H. Sobhani, and M. Khodabandeh, "Quantum diagnosis of cancer with heralded single photons," Laser Phys. Lett., Vol. 19, pp. 105603 (1-6), 2022. [DOI:10.1088/1612-202X/ac8bd4]
19. K. Guo, E.N. Christensen, J.B. Christensen, J.G. Koefoed, D. Bacco, Y. Ding, H. Ou, and K. Rottwitt, "High coincidence-to-accidental ratio continuous-wave photon-pair generation in a grating-coupled silicon strip waveguide," Appl. Phys. Express, Vol. 10, pp. 062801 (1-5), 2017. [DOI:10.7567/APEX.10.062801]
20. Z.-Y.J. Ou, Multi-photon quantum interference, Springer, Vol. 43, 2007.
21. K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M.F. O'Boyle, B. Fang, V.O. Lorenz, A.B. U'Ren, and P.G. Kwiat, "Joint spectral characterization of photon-pair sources," J. Mod. Opt., Vol. 65, pp. 1141-1160, 2018. [DOI:10.1080/09500340.2018.1437228]
22. N. Lal, A. Banerji, A. Biswas, A. Anwar, and R.P. Singh, "Single photon sources with different spatial modes," arXiv preprint arXiv:1905.01089 (1-7), 2019.
23. B.J. Pearson and D.P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," Am. J. Phys., Vol. 78, pp. 471-484, 2010. [DOI:10.1119/1.3354986]
24. E. Bocquillon, C. Couteau, M. Razavi, R. Laflamme, and G. Weihs, "Coherence measures for heralded single-photon sources," Phys. Rev. A, Vol.79, pp. 035801(1-4), 2009. [DOI:10.1103/PhysRevA.79.035801]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.