Volume 15, Issue 2 (Summer-Fall 2021)                   IJOP 2021, 15(2): 219-226 | Back to browse issues page


XML Print


1- Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, P.O. Box 14115-194, Tehran 1411713116, Iran
2- Faculty of Science, Department of Physics, Shahrekord University, P.O. Box 115, Shahrekord 88186-34141, Iran & Nanotechnology Research Center, Shahrekord University, Shahrekord, Iran
Abstract:   (7714 Views)
We investigate the propagation of the normal two-photon number state and coherent state of light through a dispersive non-Hermitian bilayer structure composed of gain and loss layers, particularly at a discrete set of frequencies for which this structure holds PT-symmetric. We reveal how dispersion and gain/loss-induced noises in such a bilayer structure affect the antibunching property of the incident light. For this purpose, we have calculated the second-order coherence of the output state of the bilayer. Varying the loss layer coefficient, we show that the antibunching property of the incident light only retains to some extent, for small values of loss coefficient for the transmitted number state.
Full-Text [PDF 428 kb]   (1192 Downloads)    
Type of Study: Research | Subject: Quantum Optics, Quantum Communications, Quantom Computing
Received: 2022/03/19 | Revised: 2022/05/4 | Accepted: 2022/05/7 | Published: 2022/06/22

References
1. C.M. Bender and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett. Vol. 80, pp. 5243-5246, June 1998. [DOI:10.1103/PhysRevLett.80.5243]
2. C.M. Bender, "Making sense of non-Hermitian Hamiltonians," Rep. Prog. Phys. Vol. 70, pp. 947-1025, May 2007. [DOI:10.1088/0034-4885/70/6/R03]
3. C.E. Rüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nat. Phys. Vol. 6, pp. 192-195, Jan. 2010. [DOI:10.1038/nphys1515]
4. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, and D.N. Christodoulides, "Observation of PT-symmetry breaking in complex optical potentials," Phys. Rev. Lett. Vol. 103, pp. 093902 (1-4), Aug. 2009. [DOI:10.1103/PhysRevLett.103.093902] [PMID]
5. K.G. Makris, R. El-Ganainy, and D.N. Christodoulides, "Beam dynamics in PT-symmetric optical lattices" Phys. Rev. Lett. Vol. 100, pp. 103904 (1-4), March 2008. [DOI:10.1103/PhysRevLett.100.103904] [PMID]
6. F. Nazari, M. Nazari, and M.K. Moravvej-Farshi, "A 2×2 spatial optical switch based on PT-symmetry," Opt. Lett. Vol. 36, pp. 4368-4370, Nov. 2011. [DOI:10.1364/OL.36.004368] [PMID]
7. M. Nazari, F. Nazari, and M.K. Moravvej-Farshi, "Dynamic behavior of spatial solitons propagating along scarf II parity-time symmetric cells," J. Opt. Soc. Am. B, Vol. 29, pp. 3057-3062, Nov. 2012. [DOI:10.1364/JOSAB.29.003057]
8. L. Ge, Y.D. Chong, and A.D. Stone, "Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures," Phys. Rev. A, Vol. 85, pp. 023802 (1-10), Feb. 2012. [DOI:10.1103/PhysRevA.85.023802]
9. F. Nazari and M.K. Moravvej-Farshi, "Multi-channel optical isolator based on nonlinear triangular parity time-symmetric lattice," IEEE J. Quantum Electron. Vol. 52, pp. 1-7, June 2016. [DOI:10.1109/JQE.2016.2582639]
10. E. Pilehvar, M.K. Moravvej-Farshi, and H. Ramezani, "Circuit model of parity-time symmetric waveguides array", in 24th Iranian Conference on Optics and Photonics (ICOP 2018), Shahrekord, Iran, p. 825, 2018.
11. S. Scheel and A. Szameit, "PT-symmetric photonic quantum systems with gain and loss do not exist," Europhys. Lett. Vol. 122, pp. 34001 (1-5), May 2018. [DOI:10.1209/0295-5075/122/34001]
12. F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel and A. Szameit, "Observation of PT-symmetric quantum interference," Nat. Photonics, Vol. 13, pp. 883-887, Sept. 2019. [DOI:10.1038/s41566-019-0517-0]
13. E. Pilehvar, E. Amooghorban, and M.K. Moravvej-Farshi, "Propagation of quantum squeezed radiation in symmetric Rydberg atomic structures," in 27th Iranian Conf. on Electrical Engineering (ICEE2019), pp. 384-387, Yazd, Iran, 2019. [DOI:10.1109/IranianCEE.2019.8786406]
14. E. Pilehvar, E. Amooghorban, and M.K. Moravvej-Farshi, "Quantum squeezed light propagation in an optical parity-time (PT)-symmetric structure," Int. J. Optics and Photonics (IJOP), Vol. 13, pp. 181-188, Dec. 2019. [DOI:10.29252/ijop.13.2.181]
15. E. Pilehvar, E. Amooghorban, and M.K. Moravvej-Farshi, "Quantum optical analysis of squeezed state of light through dispersive non-Hermitian optical bilayers," J. Opt. Vol. 24, pp. 025201 (1-11), Feb. 2022. [DOI:10.1088/2040-8986/ac461c]
16. E. Pilehvar, E. Amooghorban, and M.K. Moravvej-Farshi, "Oblique propagation of the squeezed states of s(p)-polarized light through non-Hermitian multilayered structures," Opt. Express, Vol. 30, pp. 3553-3565, Jan. 2022. [DOI:10.1364/OE.448229] [PMID]
17. E. Pilehvar, E. Amooghorban, and M.K. Moravvej-Farshi, "Propagation of quantum squeezed light through a non-Hermitian bilayer: Effective medium theory," presented at the 5th IEEE Workshop on Recent Advances in Photonics (WRAP2022), Mumbai, India, March 4-6, Paper 97, 2022. [DOI:10.1109/WRAP54064.2022.9758355] [PMCID]
18. O.V. Shramkova, K.G. Makris, D.N. Christodoulides, and G.P. Tsironis, "Dispersive non-Hermitian optical heterostructures," Photonics Res. Vol. 6, pp. A1-A5, April 2018. [DOI:10.1364/PRJ.6.0000A1]
19. A. Fang, T. Koschny, and C.M. Soukoulis, "Lasing in metamaterials nanostructures," J. Opt. Vol. 12, pp. 024013 (1-13), Feb. 2010. [DOI:10.1088/2040-8978/12/2/024013]
20. A.A. Zyablovsky, A.P. Vinogradov, A.A. Pukhov, A.V. Dorofeenko, and A.A. Lisyansky, "PT-symmetry in optics," Phys- USP, Vol. 57, pp. 1063-1082, Nov. 2014. [DOI:10.3367/UFNe.0184.201411b.1177]
21. M. Artoni and R. Loudon, "Propagation of nonclassical light through an absorbing and dispersive slab," Phys. Rev. A, Vol. 59, pp. 2279 (1-12), March 1999. [DOI:10.1103/PhysRevA.59.2279]
22. E. Amooghorban, N.A. Mortensen, and M. Wubs, "Quantum optical effective-medium theory for loss-compensated metamaterials," Phys. Rev. Lett. Vol. 110, pp. 153602 (1-5), April 2013. [DOI:10.1103/PhysRevLett.110.153602] [PMID]
23. E. Amooghorban and M. Wubs, "Quantum optical effective-medium theory for layered metamaterials," Arxiv:1606.07912v1, 2016.
24. A. Fang, T. Koschny, and C.M. Soukoulis, "Self-consistent calculations of loss-compensated fishnet metamaterials," Phys. Rev. B, Vol. 82, pp. 121102 (1-5), Sept. 2010. [DOI:10.1103/PhysRevB.82.121102]
25. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.K. Yuan, and V.M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, pp. 735-740, 2010. [DOI:10.1038/nature09278] [PMID]
26. K. Tanaka, E. Plum, J.Y. Ou, T. Uchino, and N.I. Zheludev, "Multifold enhancement of quantum dot luminescence in plasmonic metamaterials," Phys. Rev. Lett. Vol. 105, pp. 227403 (1-4), Nov. 2010. [DOI:10.1103/PhysRevLett.105.227403] [PMID]
27. R. Matloob and G. Pooseh, "Scattering of coherent light by a dielectric slab," Opt. Commun. Vol. 181, pp. 109-122, July 2000. [DOI:10.1016/S0030-4018(00)00757-4]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.