Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 41-48 | Back to browse issues page


XML Print


1- Department of Physics, University of Sistan and Baluchestan, Zahedan, Iran
Abstract:   (3214 Views)
Nobel metal nanoparticles (NPs) are widely used in various applications including optical and biological sensors, biomedicine, photocatalysts, electronics, and photovoltaic cells. The optical properties of gold NPs are surveyed in this paper under the Localized Surface Plasmon Resonance (LSPR) effect, which increases the light absorption and scattering at the LSPR wavelength. This LSPR frequency depends on various factors, including the shape and size of the particles as well as incident electromagnetic polarization. Here, the optical response of gold NPs with different shapes and sizes are investigated using the finite element method (FEM). The results show that the bandwidth, amplitude, and LSPR wavelength depend on the shape and dimensions of the NPs as well as the polarization of the incident light. The LSPR wavelength changes from 500 to 650 nm for different shapes of the gold NPs including sphere, octahedral, cube, ellipsoid, triangle, and with identical volume. To study the NP size effect on the optical properties, the absorption and scattering cross-sections (CSs) are also investigated for different sizes of NPs. The results show a redshift in the LSPR wavelength by increasing the NP size.
Full-Text [PDF 342 kb]   (1234 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/03/6 | Revised: 2021/06/10 | Accepted: 2021/08/25 | Published: 2021/12/30

References
1. W. Krasser and J. Tiggesbaumker, Uwe Kreibig and Michael Vollmer: Optical Properties of Metal Clusters, Springer Verlag, Berlin, 1995.
2. S. Castelletto and A. Boretti, "Noble metal nanoparticles in thin film solar cells," Nanosci. Nanotechnol. Lett. Vol. 5, pp. 36-40, 2013. [DOI:10.1166/nnl.2013.1396]
3. L.L. Tan, M. Wei, L. Shang, and Y.W. Yang, "Cucurbiturils‐Mediated Noble Metal Nanoparticles for Applications in Sensing, SERS, Theranostics, and Catalysis," Adv. Funct. Mater. Vol. 31, pp. 2007277 (1-26), 2021. [DOI:10.1002/adfm.202007277]
4. M. Sharifi, F. Attar, A.A. Saboury, K. Akhtari, N. Hooshmand, A. Hasan, M.A. El-Sayed, and M. Falahati, "Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy," J. Control. Release, Vol. 311, pp. 170-189, 2019. [DOI:10.1016/j.jconrel.2019.08.032] [PMID]
5. H. Kang, J.T. Buchman, R.S. Rodriguez, H.L. Ring, J. He, K.C. Bantz, and C.L. Haynes, "Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities," Chem. Rev. Vol. 119, pp. 664-699, 2018. [DOI:10.1021/acs.chemrev.8b00341] [PMID]
6. X. Huang and M.A. El-Sayed, "Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy," J. Adv. Res. Vol. 1, pp. 13-28, 2010. [DOI:10.1016/j.jare.2010.02.002]
7. R.D. Averitt, S.L. Westcott, and N.J. Halas, "Linear optical properties of gold nanoshells," J. Opt. Soc. Amer. B, Vol. 16, pp. 1824-1832, 1999. [DOI:10.1364/JOSAB.16.001824]
8. R. Rodríguez-Oliveros and J.A. Sánchez-Gil, "Gold nanostars as thermoplasmonic nanoparticles for optical heating," Opt. Express, Vol. 20, pp. 621-626, 2012. [DOI:10.1364/OE.20.000621] [PMID]
9. G.S. He, J. Zhu, K.-T. Yong, A. Baev, H.-X. Cai, R. Hu, Y. Cui, X.-H. Zhang, and P. Prasad, "Scattering and absorption cross-section spectral measurements of gold nanorods in water," J. Phys. Chem. C, Vol. 114, pp. 2853-2860, 2010. [DOI:10.1021/jp907811g]
10. L. M. Liz-Marzán, "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles," Langmuir, Vol. 22, pp. 32-41, 2006. [DOI:10.1021/la0513353] [PMID]
11. P.N. Njoki, I.-I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, "Size correlation of optical and spectroscopic properties for gold nanoparticles," J. Phys. Chem. C, Vol. 111, pp. 14664-14669, 2007. [DOI:10.1021/jp074902z]
12. V. Amendola and M. Meneghetti, "Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles," Phys. Chem. Chem. Phys. Vol. 11, pp. 3805-3821, 2009. [DOI:10.1039/b900654k] [PMID]
13. S. Hashemizadeh and M. Rashidi Huyeh, "Silver nanocolloid: synthesis, optical and thermo-optical properties," Sci. Adv. Mater. Vol. 829, pp. 670-674, 2014. [DOI:10.4028/www.scientific.net/AMR.829.670]
14. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li, "Anisotropic metal nanoparticles: synthesis, assembly, and optical applications," J. Phys. Chem. B, Vol. 109, pp. 13857-13870, 2005. [DOI:10.1021/jp0516846] [PMID]
15. J. Cao, T. Sun, and K.T. Grattan, "Gold nanorod-based localized surface plasmon resonance biosensors: A review," Sens. Actuator B-Chem.Vol. 195, pp. 332-351, 2014. [DOI:10.1016/j.snb.2014.01.056]
16. L. Scarabelli, C. Hamon, and L.M. Liz-Marzán, "Design and fabrication of plasmonic nanomaterials based on gold nanorod supercrystals," Colloidal Synthesis Plasmonic Nanometals, Vol. 29, pp. 677-706, 2020. [DOI:10.1201/9780429295188-22]
17. Z.-C. Xu, C.-M. Shen, C.-W. Xiao, T.-Z. Yang, S.-T. Chen, H.-L. Li, and H.-J. Gao, "Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior," Chem. Phys. Lett. Vol. 432, pp. 222-225, 2006. [DOI:10.1016/j.cplett.2006.10.056]
18. J. E. Millstone, G.S. Métraux, and C.A. Mirkin, "Controlling the edge length of gold nanoprisms via a seed‐mediated approach," Adv. Funct. Mater. Vol. 16, pp. 1209-1214, 2006. [DOI:10.1002/adfm.200600066]
19. A. Miranda, E. Malheiro, E. Skiba, P. Quaresma, P.A. Carvalho, P. Eaton, B. de Castro, J.A. Shelnutt, and E. Pereira, "One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length," Nanoscale, Vol. 2, pp. 2209-2216, 2010. [DOI:10.1039/c0nr00337a] [PMID]
20. M. Klekotko, J. Olesiak-Banska, and K. Matczyszyn, "Photothermal stability of biologically and chemically synthesized gold nanoprisms," J. Nanoparticle Res. Vol. 19, pp. 1-9, 2017. [DOI:10.1007/s11051-017-4027-z] [PMID] [PMCID]
21. C. Xue, Z. Li, and C.A. Mirkin, "Large‐Scale Assembly of Single‐Crystal Silver Nanoprism Monolayers," Small, Vol. 1, pp. 513-516, 2005. [DOI:10.1002/smll.200400150] [PMID]
22. C. Li, K.L. Shuford, Q.H. Park, W. Cai, Y. Li, E.J. Lee, and S.O. Cho, "High‐yield synthesis of single‐crystalline gold nano‐octahedra," Angew. Chem. Vol. 119, pp. 3328-3332, 2007. [DOI:10.1002/ange.200604167]
23. C. Cao, S. Park, and S.J. Sim, "Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase," J. Colloid Interface Sci. Vol. 322, pp. 152-157, 2008. [DOI:10.1016/j.jcis.2008.03.031] [PMID]
24. C.C. Chang, H.L. Wu, C.H. Kuo, and M.H. Huang, "Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures," Chem. Mater. Vol. 20, pp. 7570-7574, 2008. [DOI:10.1021/cm8021984]
25. P.J. Chung, L.M. Lyu, and M.H. Huang, "Seed‐Mediated and Iodide‐Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures," Chem. Eur. J. Vol. 17, pp. 9746-9752, 2011. [DOI:10.1002/chem.201101155] [PMID]
26. Y. Chen, X. Gu, C.-G. Nie, Z.-Y. Jiang, Z.-X. Xie, and C.-J. Lin, "Shape controlled growth of gold nanoparticles by a solution synthesis," Commun. Chem. Vol. 33, pp. 4181-4183, 2005. [DOI:10.1039/b504911c] [PMID]
27. X. Lu, M. Rycenga, S.E. Skrabalak, B. Wiley, and Y. Xia, "Chemical synthesis of novel plasmonic nanoparticles," Annu. Rev. Phys. Chem. Vol. 60, pp. 167-192, 2009. [DOI:10.1146/annurev.physchem.040808.090434] [PMID]
28. J. Krajczewski, M. Kędziora, K. Kołątaj, and A. Kudelski, "Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces," RSC adv. Vol. 9, pp. 18609-18618, 2019. [DOI:10.1039/C9RA03012C]
29. S. Link, M. Mohamed, and M. El-Sayed, "Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant," J. Phys. Chem. B, Vol. 103, pp. 3073-3077, 1999. [DOI:10.1021/jp990183f]
30. P. K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine," J. Phys. Chem. B, Vol. 110, pp. 7238-7248, 2006. [DOI:10.1021/jp057170o] [PMID]
31. T. Jensen, L. Kelly, A. Lazarides, and G.C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Clust. Sci. Vol. 10, pp. 295-317, 1999. [DOI:10.1023/A:1021977613319]
32. P. Das, T.K. Chini, and J. Pond, "Probing higher order surface plasmon modes on individual truncated tetrahedral gold nanoparticle using cathodoluminescence imaging and spectroscopy combined with FDTD simulations," J. Phys. Chem. C, Vol. 116, pp. 15610-15619, 2012. [DOI:10.1021/jp3047533]
33. L. Bonatti, G. Gil, T. Giovannini, S. Corni, and C. Cappelli, "Plasmonic Resonances of Metal Nanoparticles: Atomistic vs. Continuum Approaches," Front. Chem. Vol. 8, pp. 340 (1-15), 2020. [DOI:10.3389/fchem.2020.00340] [PMID] [PMCID]
34. A. Doicu, T. Wriedt, and Y.A. Eremin, Light scattering by systems of particles: null-field method with discrete sources: theory and programs, Springer, 2006. [DOI:10.1007/978-3-540-33697-6]
35. G. Mie, "Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions," Ann. Phys. Vol. 25, pp. 377-445, 1908. [DOI:10.1002/andp.19083300302]
36. J.Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A.O. Govorov, "Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects," Phys. Rev. B, Vol. 77, pp. 165301 (1-9), 2008. [DOI:10.1103/PhysRevB.77.165301]
37. J.Z. Zhang, Optical properties and spectroscopy of nanomaterials, World Scientific, 2nd Ed, 2009. [DOI:10.1142/7093]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.