Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 93-100 | Back to browse issues page


XML Print


1- Magneto-plasmonics Lab, Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
Abstract:   (2161 Views)
Recently, color production by using plasmonic structures has widely been studied. In this research, a flat and flexible two-dimensional Kapton-copper plasmonic crystal with very low thickness has been fabricated in a new and optimal way. Color production is performed using our proposed plasmonic structure and different colors are achieved by changing the incidence angle of light. Also, the plasmonic resonance response of the fabricated structure has been recorded at the incidence angle of 58 degrees. Advantages of our proposed structure are low cost, easy fabrication, and very small dimensions, and thus this research can be useful due to the increasing needs for the integration and miniaturizing of optical devices in modern nanophotonic systems.
Full-Text [PDF 387 kb]   (1029 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2021/01/25 | Revised: 2021/09/8 | Accepted: 2021/10/22 | Published: 2021/12/30

References
1. A.T. Young, "Rayleigh scattering," Appl. Opt. Vol. 20, pp. 533-535, 1981. [DOI:10.1364/AO.20.000533] [PMID]
2. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," Phys. Chem. B, Vol. 107, pp. 668-677, 2003. [DOI:10.1021/jp026731y]
3. A. Kristensen, J.K. Yang, S.I. Bozhevolnyi, S. Link, P. Nordlander, N.J. Halas, and N.A. Mortensen, "Plasmonic colour generation," Nat. Rev. Mater. Vol. 2, pp. 1-14, 2016. [DOI:10.1038/natrevmats.2016.88]
4. W. Wang, D. Rosenmann, D.A. Czaplewski, X. Yang, and J. Gao, "Realizing structural color generation with aluminum plasmonic V-groove metasurfaces," Opt. Express, Vol. 25, pp. 20454-20465, 2017. [DOI:10.1364/OE.25.020454] [PMID]
5. M. Jalali, Y. Yu, K. Xu, R.J. Ng, Z. Dong, L. Wang, S.S. Dinachali, M. Hong, and J.K. Yang, "Stacking of colors in exfoliable plasmonic superlattices," Nanoscale Vol. 8, pp. 18228-18234, 2016. [DOI:10.1039/C6NR03466G] [PMID]
6. W. Wan, J. Gao, and X. Yang, "Full-color plasmonic metasurface holograms," ACS Nano Vol. 10, pp. 10671-10680, 2016. [DOI:10.1021/acsnano.6b05453] [PMID]
7. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, "Plasmonic colour laser printing," Nat. Nanotech. Vol. 11, pp. 325-329, 2016. [DOI:10.1038/nnano.2015.285] [PMID]
8. C. Yang, W. Shen, J. Zhou, X. Fang, D. Zhao, X. Zhang, C. Ji, B. Fang, Y. Zhang, X. Liu, and L.J. Guo, "Angle robust reflection/ transmission plasmonic filters using ultrathin metal patch array," Adv. Opt. Mater. Vol. 4, pp. 1981-1986, 2016. [DOI:10.1002/adom.201600397]
9. V.R. Shrestha, S.S. Lee, E.S. Kim, and D.Y. Choi, "Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array," Nano Lett. Vol. 14, pp. 6672-6678, 2014. [DOI:10.1021/nl503353z] [PMID]
10. Q. Chen and D.R. Cumming, "High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films," Opt. Express Vol. 18, pp. 14056-14062, 2010. [DOI:10.1364/OE.18.014056] [PMID]
11. W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature Vol. 424, pp. 824-830, 2003. [DOI:10.1038/nature01937] [PMID]
12. A.V. Zayats, I. I. Smolyaninov, and A.A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. Vol. 408, pp. 131-314, 2005. [DOI:10.1016/j.physrep.2004.11.001]
13. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science Vol. 311, pp. 189-193, 2006. [DOI:10.1126/science.1114849] [PMID]
14. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, and M.L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater. Vol. 9, pp. 193-204, 2010. [DOI:10.1038/nmat2630] [PMID]
15. N. Ikeda, Y. Sugimoto, M. Ochiai, D. Tsuya, Y. Koide, D. Inoue, A. Miura, T. Nomura, H. Fujikawa, and K. Sato, "Color filter based on surface plasmon resonance utilizing sub-micron periodic hole array in aluminum thin film," IEICE Trans. On Electron. Vol. 95, pp. 251-254, 2012. [DOI:10.1587/transele.E95.C.251]
16. R. Rajasekharan, E. Balaur, A. Minovich, S. Collins, T.D. James, A. Djalalian-Assl, K. Ganesan, S. Tomljenovic-Hanic, S. Kandasamy, E. Skafidas, D. N. Neshev, P. Mulvaney, A. Roberts, and S. Prawer, "Filling schemes at submicron scale: Development of submicron sized plasmonic colour filters," Sci. Rep. Vol. 4, pp. 6435-6444, 2014. [DOI:10.1038/srep06435] [PMID] [PMCID]
17. B.Y. Zheng, Y. Wang, P. Nordlander, and N.J. Halas, "Color‐selective and CMOS-compatible photodetection based on aluminum plasmonics," Adv. Mater. Vol. 26, pp. 6318-6323, 2014. [DOI:10.1002/adma.201401168] [PMID]
18. S. Yokogawa, S.P. Burgos, and H.A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. Vol. 12, pp. 4349-4354, 2012. [DOI:10.1021/nl302110z] [PMID]
19. Q. Chen, D. Das, D. Chitnis, K. Walls, T.D. Drysdale, S. Collins, and D.R.S. Cumming, "A CMOS image sensor integrated with plasmonic colour filters," Plasmonics Vol. 7, pp. 695-699, 2012. [DOI:10.1007/s11468-012-9360-6]
20. G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T.J. Huang, A.J. Danner, J. Teng, and Y.J. Liu, "Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays," Nanoscale Vol. 5, pp. 6243-6248, 2013. [DOI:10.1039/c3nr01419c] [PMID]
21. T. Ellenbogen, K. Seo, and K.B. Crozier, "Chromatic plasmonic polarizers for active visible color filtering and polarimetry," Nano Lett. Vol. 12, pp. 1026-1031, 2012. [DOI:10.1021/nl204257g] [PMID]
22. K. Kumar, H. Duan, R. S. Hegde, S.C. Koh, J. N. Wei, and J.K. Yang, "Printing colour at the optical diffraction limit," Nat. Nanotech. Vol. 7, pp. 557-561, 2012. [DOI:10.1038/nnano.2012.128] [PMID]
23. W. Yue, S. Gao, S.S. Lee, E.S. Kim, and D.Y. Choi, "Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors," Laser & Photonics Rev. Vol. 11, pp. 1600285-1600292, 2017. [DOI:10.1002/lpor.201600285]
24. A.E. Miroshnichenko, S. Flach, and Y.S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys. Vol. 82, pp. 2257-2298, 2010. [DOI:10.1103/RevModPhys.82.2257]
25. X. Duan, S. Kamin, and N. Liu, "Dynamic plasmonic colour display," Nat. Commun. Vol. 8, pp. 1-9, 2017. [DOI:10.1038/ncomms14606] [PMID] [PMCID]
26. D. Franklin, Y. Chen, A. Vazquez-Guardado, S. Modak, J. Boroumand, D. Xu, S.T. Wu, and D. Chanda, "Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces," Nat. Commun. Vol. 6, pp. 1-8, 2015. [DOI:10.1038/ncomms8337] [PMID] [PMCID]
27. M.L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N.J. Halas, "Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response," Nano Lett. Vol. 17, pp. 6034-6039, 2017. [DOI:10.1021/acs.nanolett.7b02350] [PMID]
28. K. Kumar, H. Duan, R. S. Hegde, S.C. Koh, J.N. Wei, and J.K. Yang, "Printing colour at the optical diffraction limit," Nature nanotechnol. Vol. 7, pp. 557-561, 2012. [DOI:10.1038/nnano.2012.128] [PMID]
29. D.J. Benford, T.J. Powers, and S.H. Moseley, "Thermal conductivity of Kapton tape," Cryogenics Vol. 39, pp. 93-95, 1999. [DOI:10.1016/S0011-2275(98)00125-8]
30. A.F. Abdulrahman, S.M. Ahmed, N.M. Ahmed, and M.A. Almessiere, "Fabrication, characterization of ZnO nanorods on the flexible substrate (Kapton tape) via chemical bath deposition for UV photodetector applications," AIP Conference Proceedings Vol. 1875, pp. 020004-020008, 2017. [DOI:10.1063/1.4998358]
31. X. Zhou, H. Li, G. Yu, Y. Chen, Y. Wang, Z. Zeng, and L. Chi, "A Highly-efficient, Stable and Flexible Kapton Tape-based SERS Chip," Mater. Chem. Front. Vol. 5, pp. 6471-6475, 2021. [DOI:10.1039/D1QM00547B]
32. J.J. Hassan, M.A. Mahdi, S.J. Kasim, N.M. Ahmed, H.A. Hassan, and Z. Hassan, "Fast UV detection and hydrogen sensing by ZnO nanorod arrays grown on a flexible Kapton tape," Mater. Sci.-Polandm Vol. 31, pp. 180-185, 2013. [DOI:10.2478/s13536-012-0084-2]
33. K.L. Hsu and M.C. Wu, "Fabrication and Characterization of Flexible AlGaN/GaN HEMTs on Kapton Tape," IEEE Trans. Electron Devices Vol. 68, pp. 3320-3324, 2021. [DOI:10.1109/TED.2021.3083475]
34. E. Lindner, V.V. Cosofret, S. Ufer, R.P. Buck, R.P. Kusy, R.B. Ash, and H.T. Nagle, "Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications," J. Chem. Soc. Faraday Trans. Vol. 89, pp. 361-367, 1993. [DOI:10.1039/ft9938900361]
35. M. Ghasemi, N. Roostaei, F. Sohrabi, S.M. Hamidi, and P.K. Choudhury, "Biosensing applications of all-dielectric SiO 2-PDMS meta-stadium grating nanocombs," Opt. Mater. Express, Vol. 10, pp. 1018-1033, 2020. [DOI:10.1364/OME.389361]
36. R.K. Mishra, A.K. Zachariah, and S. Thomas, "Energy-dispersive X-ray spectroscopy techniques for nanomaterial," Microscopy Methods Nanomaterials Characterization, pp. 383-405, 2017. [DOI:10.1016/B978-0-323-46141-2.00012-2]
37. A.I. Väkeväinen, R.J. Moerland, H.T. Rekola, A.P. Eskelinen, J.P. Martikainen, D.H. Kim, and P. Törmä, "Plasmonic surface lattice resonances at the strong coupling regime," Nano Lett. Vol. 14, pp. 1721-1727, 2014. [DOI:10.1021/nl4035219] [PMID]
38. V.G. Kravets, A.V. Kabashin, W.L. Barnes, and A.N. Grigorenko, "Plasmonic surface lattice resonances: a review of properties and applications," Chem. Rev. Vol. 118, pp. 5912-5951, 2018. [DOI:10.1021/acs.chemrev.8b00243] [PMID] [PMCID]
39. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. Vol. 116, pp. 6755-6759, 2002. [DOI:10.1063/1.1462610]
40. W.A. Murray and W.L. Barnes, "Plasmonic materials," Adv. Mater. Vol. 19, pp. 3771-3782, 2007. [DOI:10.1002/adma.200700678]
41. W.A. Murray, J.R. Suckling, and W.L. Barnes, "Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances," Nano Lett. Vol. 6, pp. 1772-1777, 2006. [DOI:10.1021/nl060812e] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.