Volume 14, Issue 2 (Summer-Fall 2020)                   IJOP 2020, 14(2): 187-194 | Back to browse issues page


XML Print


Department of EEE, Ahsanullah University of Science and Technology, Dhaka, Bangladesh
Abstract:   (2504 Views)
Optical resonators where light will circulate in two opposite directions independently. Usually, the two distinct topologies of optical resonators are Linear and Ring. Two end mirrors with perpendicular light incidence have linear resonators (standing-wave resonators). In the other hand, there are no end mirrors in ring resonators; none of the resonator mirrors reflects light back into itself. Given its versatility and cost-effectiveness, it is beneficial to provide a low index ring resonator. Compared with existing high index technologies it can provide an attractive solution. The refractive index difference plays a key role in evaluating the properties of an optical dielectric waveguide, and a higher index contrast allows for shifting to greater integration scales and accessibility to new technologies and interfaces. However high contrast waveguides are harder to realize and more important, that their use does not raise any severe impediments. The intent of this article is to evaluate the impact of the waveguide features with regard to the correlation of the index and to investigate the complexities. This paper evaluates the influence of the index contrast on dielectric waveguide characteristics such as single mode system, losses, technical constraints, and available materials. Evaluation is developed by utilizing Rsoft CAD, known as BeamProp software, for ring resonators (single, double or triple optical loop). The main objective of this contribution is to achieve maximum flexibility and more productivity from the proposed design. This paper is an analogy for the design of optical waveguides, so that we can achieve flexibility by lowering the silicon index.
Full-Text [PDF 282 kb]   (1746 Downloads)    
Type of Study: Research | Subject: General
Received: 2020/04/29 | Revised: 2020/12/20 | Accepted: 2021/01/14 | Published: 2021/05/20

References
1. L. Pavesi and D.J. Lockwood, Topics in Applied Physics, Silicon Photonics, Springer-Verlag Berlin Heidelberg, 2004.
2. D. Melati, A. Melloni, and F. Morichetti, "Real photonic waveguides: guiding light through imperfections," Adv. Opt. Photon. Vol. 6, pp. 156-224, 2014. [DOI:10.1364/AOP.6.000156]
3. D. Melati, F. Morichetti, and A. Melloni, "Modeling reflections induced by waveguide transitions," Opt. Quantum Electron. Vol. 35, pp. 1-8, 2012.
4. M.J. Paniccia, "A perfect marriage: Optics and silicon," Optik & Photonik, Vol. 2, pp. 34-38, 2011. [DOI:10.1002/opph.201190327]
5. J. Ahn, M. Fiorentino, R.G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N.P. Jouppi, M. McLaren, C.M. Santori, R.S. Schreiber, S.M. Spillane, D. Vantrease, and Q. Xu "Devices and architectures for photonic chip-scale integration," Appl. Phys. A, Vol. 95, pp. 989-997, 2009. [DOI:10.1007/s00339-009-5109-2]
6. D. Melati, A. Alippi, A. Annoni, N. Peserico, and A. Melloni, " Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission," Optics Letters, Vol. 42, pp. 342-345, 2017. [DOI:10.1364/OL.42.000342]
7. F. Morichetti, F. Toso, F, Zanetto, G. Ferrari, M. Sampietro, A. Melloni, and D.A.B. Miller, "Dynamically controlling optical beams with programmable silicon photonic meshes," Proceedings, Vol. 11283, Integrated Optics: Devices, Materials, and Technologies XXIV; 1128310, 2020. [DOI:10.1117/12.2550397]
8. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. Vol. 24, pp. 4600-4615, 2006. [DOI:10.1109/JLT.2006.885782]
9. J.C.C. Mak and J.K.S. Poon, "Multivariable Tuning Control of Photonic Integrated Circuits," IEEE J. Lightw. Technol. Vol. 35, pp. 1531-1541, 2017. [DOI:10.1109/JLT.2017.2655041]
10. M. Milanizadeh, S. Ahmadi, M. Petrini, D. Aguiar, R. Mazzanti, F. Zanetto, E. Guglielmi, M. Sampietro, F. Morichetti, and A. Melloni, "Control and calibration recipes for photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron. Vol. 26, pp. 370-378, 2020. [DOI:10.1109/JSTQE.2020.2975657]
11. P. Dumais, D.J. Goodwill, D. Celo, J. Jiang, Ch. Zhang, F. Zhao, X. Tu, Ch. Zhang, Sh. Yan, J. He, M. Li, W. Liu, Y. Wei, D. Geng, H. Mehrvar, and E. Bernier "Silicon Photonic Switch Subsystem With 900 Monolithically Integrated Calibration Photodiodes and 64-Fiber Package," IEEE J. Lightw. Technol. Vol. 36, pp. 233-238, 2018. [DOI:10.1109/JLT.2017.2755578]
12. F. Testa, C. J. Oton, Ch. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayúcar, M. Hofbauer, M. Hofbauer, M. Mancinelli, M. Fournier, G. Battista Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parès, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, "Design and Implementation of an Integrated Reconfigurable Silicon Photonics Switch Matrix in IRIS Project," IEEE J. Sel. Top. Quantum Electron, Vol. 22, pp. 155-168, 2016. [DOI:10.1109/JSTQE.2016.2547322]
13. G. Choo, S. Cai, B. Wang, C.K. Madsen, K. Entesari and S. Palermo, "Automatic Monitor-Based Tuning of Reconfigurable Silicon Photonic APF-Based Pole/Zero Filters," IEEE J. Lightw. Technol. Vol. 36, pp. 1899-1911, 2018. [DOI:10.1109/JLT.2018.2795582]
14. P. Dong, "Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Application," IEEE J. Sel. Top. Quantum Electron, Vol. 22, pp. 370-378, 2016. [DOI:10.1109/JSTQE.2016.2575358]
15. S. Grillanda, F. Morichetti, N. Peserico, P. Ciccarella, A. Annoni, M. Carminati, and A. Melloni, "Non-Invasive Monitoring of Mode Division Multiplexed Channels on a Silicon Photonic Chip," IEEE J. Lightw. Technol. Vol. 33, pp. 1197-1201, 2015. [DOI:10.1109/JLT.2014.2377558]
16. V.R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. Vol. 29, pp. 2387-2389, 2004. [DOI:10.1364/OL.29.002387]
17. D. Aguiar, M. Milanizadeh, E. Guglielmi, F. Zanetto, G. Ferrari, M. Sampietro, F. Morichetti, and A. Melloni, "Automatic Tuning of Silicon Photonics Microring Filter Array for Hitless Reconfigurable AddDrop," J. Light. Technol. Vol. 73, pp. 3939 - 3947, 2019. [DOI:10.1109/JLT.2019.2916473]
18. H. Jayatilleka, H. Shoman, R. Boeck, N.A.F. Jaeger, L. Chrostowski, and S. Shekhar, "Automatic Configuration and Wavelength Locking of Coupled Silicon Ring Resonators," IEEE J. Lightw. Technol. Vol. 36, pp. 210-218, 2018. [DOI:10.1109/JLT.2017.2769962]
19. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, "The role of index contrast in dielectric optical waveguides," Int. J. Mater. Prod. Technol. Vol. 34, pp. 421- 437, 2009. [DOI:10.1504/IJMPT.2009.024998]
20. B. Barua, S.P. Majumder, and A. Melloni, "Characterization of Low index Si Waveguides," 19th International Conference on Computer and Information Technology (ICCIT), Vol. 95 , pp. 113-116, 2016. [DOI:10.1109/ICCITECHN.2016.7860179]
21. R. Soref, "Integrated-photonic switching structures," APL Photonics, Vol. 3, pp. 021101 (1-19), 2018. [DOI:10.1063/1.5017968]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.