In this article, linear and nonlinear dust ion acoustic (DIA) waves are studied in a magnetized quantum dusty plasma which consists of inertialess electrons and positrons, cold ions and negatively charged dust grains. For this purpose, quantum Hydrodynamic model (QHD) and reductive perturbation method are employed. To investigate linear and nonlinear waves, dispersion relation and a quantum Zakharov-Kuznetsov (ZK) equation are derived respectively. A stationary solution of the ZK equation is obtained to investigate the effects of plasma parameters on the amplitude of the solitons.

** **

Type of Study: Research |
Subject:
Special

Received: 2018/10/15 | Revised: 2019/04/6 | Accepted: 2019/05/31 | Published: 2020/09/10

Received: 2018/10/15 | Revised: 2019/04/6 | Accepted: 2019/05/31 | Published: 2020/09/10

1. R. Kodama, P. Norreys, K. Mima, A. Dangor, R. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, "Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition," Nature, Vol. 412, pp. 798-802, 2001. [DOI:10.1038/35090525]

2. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M. D. Perry, "Ignition and high gain with ultrapowerful lasers," Phys. Plasmas, Vol. 1, pp. 1626-1634, 1994. [DOI:10.1063/1.870664]

3. H. Van Horn, "Dense astrophysical plasmas," Science, Vol. 252, pp. 384-389, 1991. [DOI:10.1126/science.252.5004.384]

4. L. Segretain, "Three-body crystallization diagrams and the cooling of white dwarfs," Astron. Astrophys. Vol. 310, pp. 485-488, 1996.

5. M. Schlanges, M. Bonitz, and A. Tschttschjan, "Plasma Phase Transition in Fluid Hydrogen‐Helium Mixtures," Contrib. Plasma Phys. Vol. 35, pp. 109-125, 1995. [DOI:10.1002/ctpp.2150350203]

6. V. Filinov, M. Bonitz, W. Ebeling, and V. Fortov, "Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations," Plasma Phys. Control. Fusion, Vol. 43, pp. 743-759, 2001. [DOI:10.1088/0741-3335/43/6/301]

7. W. Ebeling and G. Norman, "Coulombic phase transitions in dense plasmas," J. Stat. Phys. Vol. 110, pp. 861-877, 2003. [DOI:10.1023/A:1022120121219]

8. J. Vorberger, I. Tamblyn, S. A. Bonev, and B. Militzer, "Properties of dense fluid hydrogen and helium in giant gas planets," Contrib. Plasma Phys. Vol. 47, pp. 375-380, 2007 [DOI:10.1002/ctpp.200710050]

9. G. Chabrier, "Quantum effects in dense Coulumbic matter-Application to the cooling of white dwarfs," Astrophys. J. Vol. 414, pp. 695-700, 1993 [DOI:10.1086/173115]

10. G. Manfredi and F. Haas, "Self-consistent fluid model for a quantum electron gas," Phys. Rev. B, Vol. 64, pp. 075316 (1-7), 2001. [DOI:10.1103/PhysRevB.64.075316]

11. F. Haas, L. Garcia, J. Goedert, and G. Manfredi, "Quantum ion-acoustic waves," Phys. Plasmas, Vol. 10, pp. 3858-3866, 2003. [DOI:10.1063/1.1609446]

12. A.-M. Wazwaz, "The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms," Comm. Nonlinear Sci. Numer. Simulat. Vol. 13, pp. 1039-1047, 2008. [DOI:10.1016/j.cnsns.2006.10.007]

13. A.-M. Wazwaz, "Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov (ZK) equation and its modified form," Commun. Nonlinear Sci. Numer. Simulat. Vol. 10, pp. 597-606, 2005 [DOI:10.1016/j.cnsns.2004.03.001]

14. W. Moslem, S. Ali, P. K. Shukla, X. Tang, and G. Rowlands, "Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability," Phys. Plasmas, Vol. 14, pp. 082308 (1-5), 2007. [DOI:10.1063/1.2757612]

15. S. Khan, A. Mushtaq, and W. Masood, "Dust ion-acoustic waves in magnetized quantum dusty plasmas with polarity effect," Phys. Plasmas, Vol. 15, pp. 013701 (1-5), 2008. [DOI:10.1063/1.2825655]