Volume 6, Issue 2 (International Journal of Optics and Photonics (IJOP) Vol 6, No 2, Summer-Fall 2012)                   IJOP 2012, 6(2): 83-96 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Koohi-Kamali F, Ebnali-Heidari M, Moravvej-Farshi M K. Designing a dual-core photonic crystal fiber coupler by means of microfluidic infiltration. IJOP 2012; 6 (2) :83-96
URL: http://ijop.ir/article-1-116-en.html
1- Science and Research Branch, Islamic Azad University
2- Shahrekord University
3- Tarbiat Modares University
Abstract:   (21756 Views)
We report the results of our study on the role of microfluidic infiltration technique in improving the coupling characteristics of dual-core photonic crystal fiber (PCF) couplers. Using the finite element method (FEM), we evaluate the effective mode area, dispersion and coupling parameters of an infiltrated dual-core PCF. We use these parameters to design a compact and reconfigurable coupler by solving a set of coupled generalized nonlinear Schrödinger equations. This approach allows one to obtain wavelength-flattened dispersion characteristics with bandwidth of   in the ITU region, and large walk-off length simply by choosing a suitable infiltrated refractive index. We also demonstrate that under certain conditions one can observe a pulse break-up effect to generate pulse trains with high repetition rate.
Full-Text [PDF 1469 kb]   (5036 Downloads)    
Type of Study: Research | Subject: General
Received: 2013/06/20 | Revised: 2015/02/24 | Accepted: 2013/11/5 | Published: 2013/11/5

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb