Volume 15, Issue 1 (Winter-Spring 2021)                   IJOP 2021, 15(1): 35-40 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azarm M J, Keshavarz A, Honarasa G. Investigation of Size Effect in Absorption Spectra of Silver and Gold Nanoparticles. IJOP. 2021; 15 (1) :35-40
URL: http://ijop.ir/article-1-446-en.html
1- Department of Physics, Shiraz University of Technology, Shiraz, Iran
Abstract:   (135 Views)
The absorption cross-section of gold and silver nanoparticles has been demonstrated in confined wavelength spectra based on Mie's theory. For this purpose, the numerical study performed with COMSOL for defined particle size to clarify absorption spectra and final results have been compared with experimental data to express the absorption peak occurs in higher wavelength for large particle size which is in around 530 nanometers for gold and 400 nanometer for silver particles.  These results show that particle size affects directly on absorption spectra of metallic nanoparticles.
Full-Text [PDF 479 kb]   (63 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/01/18 | Revised: 2021/05/21 | Accepted: 2021/08/24 | Published: 2021/08/29

References
1. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, "Applications of magnetic nanoparticles in biomedicine," J. Phys. D: Appl. Phys. Vol. 36, pp. 220301 (1-2), 2003. [DOI:10.1088/0022-3727/36/13/201]
2. E.T. Bryant and W. Garnett, "Plasmonic Properties of Metallic Nanoparticles: The Effects of Size Quantization," Nano Lett. Vol. 12, pp. 429-434, 2012. [DOI:10.1021/nl2037613] [PMID]
3. Z. Wang, P. Tao, Y. Liu, H. Xu, Q. Ye, and H. Hu, "Rapid charging of thermal energy storage materials through plasmonic heating," Sci. Rep. Vol. 4, pp. 1-8, 2014. [DOI:10.1038/srep06246] [PMID] [PMCID]
4. J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Sc, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys. Vol. 116, pp. 6755-6759, 2002. [DOI:10.1063/1.1462610]
5. C. Noguez, "Surface plasmons on metal nanoparticles: the influence of shape and physical environment," J. Phys. Chem. C, Vol. 111, pp. 3806-3819, 2007. [DOI:10.1021/jp066539m]
6. S. Dickreuter, J. Gleixner, A. Kolloch, J. Boneberg, E. Scheer, and P. Leiderer, "Mapping of plasmonic resonances in nanotriangles," Beilstein J. Nanotechnol, Vol. 4, pp. 588-602, 2013. [DOI:10.3762/bjnano.4.66] [PMID] [PMCID]
7. R.F. Oulton, "Surface plasmon lasers: sources of nanoscopic light," Mater. Today, Vol. 15, pp. 26-34, 2012. [DOI:10.1016/S1369-7021(12)70018-4]
8. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, and M.L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nat. Mater, Vol. 9, pp. 193-204, 2010. [DOI:10.1038/nmat2630] [PMID]
9. H.A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, Vol. 9, pp. 1-11, 2011. [DOI:10.1142/9789814317665_0001]
10. K. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. Vol. 93, pp. 191113 (1-3), 2008. [DOI:10.1063/1.3021072]
11. G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Ann. Phys. (Berl.), Vol. 330, pp. 377-445, 1908. [DOI:10.1002/andp.19083300302]
12. D. Abajo, F. Garcia, and A. Howie, "Retarded field calculation of electron energy loss in inhomogeneous dielectrics," Phys. Rev. B, Vol. 65, pp. 115418 (1-17), 2002. [DOI:10.1103/PhysRevB.65.115418]
13. J.M. Montgomery, L. Tae-Woo, and S.K. Gray, "Theory and modeling of light interactions with metallic nanostructures," J. Phys.: Condens. Matter, Vol. 20, pp. 323201 (1-11), 2008. [DOI:10.1088/0953-8984/20/32/323201]
14. K. Kluczyk and W. Jacak, "Damping-induced size effect in surface plasmon resonance in metallic nano-particles: Comparison of RPA microscopic model with numerical finite element simulation (COMSOL) and Mie approach," J. Quant. Spectrosc. Radiat.Vol. 168, pp. 78-88, 2016. [DOI:10.1016/j.jqsrt.2015.08.021]
15. J. Jacak, J. Krasnyj, W. Jacak, R. Gonczarek, and A. Chepok , "Surface and volume plasmons in metallic nanospheres in a semiclassical RPA-type approach: Near-field coupling of surface plasmons with the semiconductor substrate," Phys. Rev. B, Vol. 82, pp. 035418 (1-19), 2010. [DOI:10.1103/PhysRevB.82.035418]
16. K. Kolwas, A. Derkachova, and M. Shopa, "Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles," J. Quantitative Spectroscopy Radiative Transfer, Vol. 110, pp. 14-16, 2009. [DOI:10.1016/j.jqsrt.2009.03.020]
17. C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles, John Wiley & Sons, 2008.
18. P.B. Johnson and R. Christy, "Optical constants of the noble metals," Physic. Rev. B, Vol. 6, p. 4379 (1-6), 1972. [DOI:10.1103/PhysRevB.6.4370]
19. C.S. Love, C. Victor, D.K. Smith, and K. Wilson, "Synthesis of gold nanoparticles within a supramolecular gel-phase network," Chem. Commun. Vol. 15, pp. 1971-1973, 2005. [DOI:10.1039/b418190e] [PMID]
20. G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nat. Phys. Sci. Vol. 241, pp. 20-22, 1973. [DOI:10.1038/physci241020a0]
21. R. Zhang and X. Wang, "One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response," Chem. Mater. Vol. 19, pp. 976-978, 2007. [DOI:10.1021/cm062791v]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | International Journal of Optics and Photonics

Designed & Developed by : Yektaweb