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ABSTRACT- The aim of this study is to investigate
an effective two-level atom coupled to a two-
mode f-deformed cavity field with and without
the rotating wave approximation. The first
section discusses the theoretical model of the
interaction between a two-mode cavity-field and
an effective two-level atom within the framework
of an f-DJCM without the rotating wave
approximation. After that, we obtain the
reduced density matrix of the atom with and
without the rotating-wave approximation. Then,
we have investigated the effect of the counter-
term on temporal evolution of various non-
classical properties of the atom, i.e., atomic
population inversion, atomic dipole squeezing
and atom-field entanglement. Particularly, we
compare the numerical result for three different
values of the deformation parameter q (q=1,
g=1.1, q=1) with and without the rotating wave
approximation.

KEYWORDS: F-Deformed Jaynes-
Cummings Model, Rotating Wave
Approximation, Counter-Rotating  Terms,

Virtual-Photon Processes.

I.INTRODUCTION

Many studies have so far discussed the
properties of a two-level system (qubit)
interacting with a harmonic oscillator [1], [2].
Many of these studies explain the dynamics of
the qubit-oscillator system by means of the
Rabi.

Hamiltonian [3]:
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= hedld 5
v =@ a+haw,G. [2+

+hg(a+a)é, -

(1)

In most of the experimental studies on cavity
QED, the coupling is extremely small (i.e.,

B=5_5<10°), and the qubit and the
(0]

oscillator are almost resonant (i.e. @, = w) [1].

Therefore, according to Jaynes-Cummings (JC)
model with the rotating wave approximation
(RWA), the rapidly oscillating counter-rotating

terms (CRTs)46- and a6 as virtual photon

transitions where & =(6"+6-) can be

eliminated from the interaction Hamiltonian.

However, the RWA cannot be used if the effect
of the counter rotating terms is important

A =01, or

detuning,

because of ultra-strong coupling,
of
|a)—a)0|za) + @, [5].

because extremely large

It should be noted that the system has also an
interaction with its environment, which results
in an incoherent evolution. This phenomenon
has been investigated in many studies,
considering JC model with the RWA [6]-[11].
The incoherent evolution is modeled by the
standard quantum optics master equation
(SME). The assumption in SME is that the
resulted dissipation mechanism is completely
abstract from the qubit-oscillator coupling [12]-
[16]. SME predictions are small only when
coupling is small. In cases of ultra-strong
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coupling, SME must not be used since the
RWA is not valid.

Today, it is possible to create systems that can
operate where JC model with the RWA breaks
down [17]-[21]. The most recent investigations
on damping in the regime beyond the RWA
focus on the effects of increasing the coupling
strength while keeping the qubit and oscillator
almost resonant with each other [16], [22]-[25].

The generalized JC model with intensity-
dependent coupling (IDJC) is the model that
has attracted much attention (see, e.g. [26]-
[35]). The reason is that this model represents a
simple case of a nonlinear interaction
corresponding to a more realistic physical
situation. The Hamiltonian model in this case is
as follows:

Hy, =hg(af (A6 + f(R)a"6-),
(h =a'a)

2)

where the function f(n ), which is assumed to

be real, describes the intensity dependence
coupling of atom-field interaction.

Some researchers are specifically interested in
the IDJC model in which f(7)=+A [26],[27]

because of its inherent connection to an su(1,1)
JC model [28]. It should also be noted that the
IDJC model can potentially provide many
variants of the field state possessing interesting
quantum statistical features. This means that
equation (2) can play the role of a theoretical
laboratory for analyzing time evolution of a
variety of initial states of the system. Similarly,
another theoretical scheme is proposed in [35]
that shows the possibility of generating
different families of nonlinear coherent states
[36], [37] of the radiation field under IDJC
model.

On the other hand, the f-deformed Jaynes-
Cumming model (f~-DJCM) has received much
attention because of its connection with
quantum algebras [38] which have enabled the
researchers to generalize the notion of creation
and annihilation operators of the usual quantum
oscillator and to introduce a deformed oscillator
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[39]. In addition, most of the nonlinear
generalizations of the JCM are only particular
cases of the f{-DICM [40]. The JCM
Hamiltonian with an intensity-dependent
coupling [41] has been generalized by being
related to the quantum su (1,1) algebra [42].

This is achieved by using a q-oscillator
description.

Various versions of the JCM and their g-
deformed extensions have so far been studied
and formalized [43]-[45]. The quantum
collapse and revival effects of the radiation
field in the g-deformed version of the one-
photon  on-resonant JCM  have been
investigated [40]. It has been shown [46] that a
specific form of the f-DJCM may be realized in
a single trapped ion system driven by two laser
fields. In [34], the temporal evolution of atomic
inversion and quantum fluctuation of the atomic
dipole variables have been studied. Coherent
states [47] of the radiation field in a lossless
coherently pumped micro maser have been
proposed [35] through solving a dynamical
problem based on a quite general f-DJCM.
Coherent  states are still extensively
investigated; for example, time-dependent g-
deformed coherent states, g-coherent and q-cat
states [48], and the g-deformed harmonic
oscillator with time dependent mass [49] have
all been recently studied. In addition, the
influence of nonlinear quantum dissipation on
the dynamical properties of the one-photon f-
DJCM in the large detuning approximation and
at zero temperature has been investigated in
[50]. In [51] and [52], quantum dynamics of a
dissipative deformed harmonic oscillator and a
two-mode f-deformed cavity field in a heat bath
have  been  investigated  respectively.
Additionally, quantum dynamics of a harmonic
oscillator in a deformed bath has been
investigated in [53]. Also in [54], the influence
of the counter-rotating terms on the quantum
dynamics of the damped harmonic oscillator in
a deformed bath has been investigated. The
present study mainly aimed at investigating
dynamical properties of the atom by the f-
DJCM model with and without the RWA. By
the numerical method, we show that even under
the condition in which the RWA is considered
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to be valid, there are significant effects of
virtual-photon field on the population
inversion, the quantum fluctuation of atomic
dipole variables and the atomic linear entropy.

The rest of the paper is organized as follows:
first a theoretical background will be given in
section II; in section III, the reduced density
matrix of the atom will be obtained with and
without the rotating-wave approximation. In
sections V, we study the effect of counter-
rotating terms and parameter deformation on
the various atomic properties including
population inversion, the quantum fluctuation
of atomic dipole variables and the atomic linear
entropy. Finally, the study will be summarized
and concluded in section VI.

II. THE NONDEGENERATE TWO-
PHOTON F-DJCM

In this section, we consider a two-level atom
interacting with two modes of an f-deformed
cavity field beyond the rotating-wave
approximation. The Hamiltonian for this
system in the absence of RWA is as follows:

A=3 hod i+ %6 4
i=1.2 A A ’ (3)
+7>zg(Al+A2+ +A1Az)(6-+ +&‘)

where @, and w, are frequencies for the two
modes of the field, @, is the atomic transition

frequency, &Zq2><2|—|l><l|) is the atomic
1><2|) are the

operators describing the transition between the
upper and lower atomic levels, and g is the
atom-field coupling constant. For simplicity in
the Hamiltonian (3), we ignore the term that
describes the intensity-dependent Stark shift of
two levels arising due to the transition to an

inversion operator, 6i(| 2><1,

intermediate level. The operators 4, and A’

(i=1,2) are the f-deformed annihilation and
creation operators constructed from the

conventional bosonic operators a, , a

1

Aot ~ At A
([al. ,a;]= 51.].) and number operator, #; =a; a;

, as follows:
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A =G, fiG), 4 = f(A)a;, (4)

where f(7,) is an arbitrary real function of
number operator. The deformed operators 4,
and A

oscillator commutation relations:

satisfy the f-deformed bosonic

)

lﬁ
3)
I_I
Q';

In the fi(n,)=1 , the
Hamiltonian (3) becomes the nondegenerate
two-photon non-deformed JC Hamiltonian
beyond the RWA [55] and the algebra (5)

reduces to the well-known Heisenberg-Weyl

limiting case,

algebra generated by 4,, @, , and the identity I
. This is very important because it can be
directly used in the study of the intensity-
dependent atom-field interaction in quantum
optics [56] and the study of the quantized
motion of a single ion in a harmonic-oscillator

potential trap [57]. Accordingly, the
Hamiltonian (3) can be written as follows:
H=> hoj, +ZhR(n)+ w,G. +

i=1,2 i=1,2 (6)

fl(nl)fz(nz)alaﬁ Y
Wg[ml&zﬁ(ﬁlm(ﬁz) (6"+5)

where R, (ﬁz) =, (fzz (ﬁz )_l)ﬁi :
seen, Hamiltonian (6) includes forms of the
intensity-dependent ~ atom-field  coupling,
f.(A.), and the field nonlinearity, R(#). In

fact, what the Hamiltonian(6) and the
Hamiltonian (3) describe is an intensity-
dependent two-photon coupling between a
single two-level atom and a non-deformed two-
mode radiation field when there are two

additional nonlinear interactions: R (7,) and
R,(n,) beyond the RWA. If

f,(n,)=4/1+k (n,—1), where k, is a positive

constant, the model consists of a single two-
level atom interacting via an intensity-

As it can be
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dependent two-photon coupling with a two-
mode field surrounded by two nonlinear Kerr-
like media contained inside a lossless cavity

beyond the RWA[34]. Physically, k& and &,

are related to the dispersive part of the third-
order nonlinearity of the two Kerr-like media

(Zi = kiwi)'

III. THE REDUCED DENSITY MATRIX OF
THE ATOM WITH AND WITHOUT THE
ROTATING-WAVE APPROXIMATION

In this section we obtain the reduced density

matrix of the atom with and without the

rotating-wave approximation. Let us write the
Hamiltonian (3) as follows:

A=A, + B

= Zha)i/]f;li + ga)o&z

i=1,2

H'=ng(4 4 +44) (6 +67), (7)

In the interaction picture we have:

iH,t —iH,t

H/()=e" He " =}
+4,O 4,0 | 6]

[ <z>A O+

(®)

where

(t) exp{ (a)lA A Jra)zA2 }
x A4 exp{ (a)lA A +o, 4 A4 }

A, (1) = exp{i(a)lzzlffll +w,4; 4, )t} X
x A, exp {—i(a)11211+1211 +w, 47 4, )t}

—iwyG
A+ 2 A+ iyt

G/(t)y=e ? G7e =G"e

iwyG t

iwyo t

6,(t)=e * G e

—iwy6,t
2 _ oA- _—iwgt
=0 e
)
where we use [6,,6.]=F26, and the
expansion [58]
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+§_2![;1,(;1,é)]+... (10

The time evolution operator in the interaction
picture reads (Dyson expansion)

]
0

where 7 is the time-ordering operator, which is
a shorthand notation for the expansion

(an

N|N.

U ,(2,0) = T exp[—

= 1—ig [t | 4}, ()4 6)+ 4,(1) A, (1) | %
X [&ge"“’”t‘ +6 e ™ ]—\-

+(~ig) J dt J dr, [ )AL (1) + Ay () A, () |
[(yetw} voe™ ]

F(t DAL (6)+ 4,(6) A, (1) |x

+67¢ " o

The density operator of the total system p, (¢)
is given by:

o (12)

O e

P, (6)=U,(t)p,(0)U; (t), (13)

If we use relations (12) and (13), we have:
t):{l—ijlf[, (¢,)dt, +
hio
2
_l' t 4 N A
+(;) {dtljdtzHI(tl) 1(t2)+--}><

A (
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}:

P, (0){1+%£FI, (1) dt, +
AN Ul A 3
+(_%J J.dtljdle—ll (tl)Hf (t2)+”
0 0

= l—igjdtl|:lzla(tl )’aliz(tl) j|x
0 +4,,(t) 4, (1)

A+ iy, —imyt,

x| 6te™ +67e

. 2[ 4 1;1+(l‘ )Ia+ (l)
+(—ig jdtfdt[ I\
( ) 0 10 ’ .+A11(t1)A12(t1)
X [6‘+ew"t‘ +6'_efw°tl}<
X[‘:lfl(tz)fajz(tz)"F‘azl(tz)‘an(tz)}x

]+}x

\ LA AL ()
xp,(0) 1+zgjdt{ U A F P
' { 0 l +A11(11)A12(11)

A— —lwyt

X [6‘%"’“’1 +6 e

A~ =iwyt,

x [6‘+ei“’°’2 +o67¢

ot b A (1) A (1)
+(ig jdtjdt{fll V1)
( )‘0 N A, ()4, (1)

x [6&" +67¢ K
X[‘:lrl(tz)fajz(tz)""lel(tz)‘an(tz)]x

x |:OA'+€W°& +67e ™ }F} =

A1) A5 (), (0)

x411(lz)412(t2)+
+4[] (t])4[2(tl)p[ (O)X
oA Lt AL ()AL (L) +
=P, (0)+ g’ [dt [dt, | *n\2)nh x
' 0 o[+ A, (6)4,(6) 0, (0)x
><A1+1(t2)A1+2(t2)A
Ay (6) Ay ()5, (0)+
| +4;,(,)A45,(1,)
X|:é\_+o'\_—e—ia)o(t2—t1) +é\_—é\_+eia)o(t2—t]):|+
A ()AL ()
+ig p (0)jdt[ N2/l
! . 0 ? +411(t2)A12(t2)
x[61é 67"
t N A A A
_igJ. dtl |:Al+l (tl )A1+2 (tl) + All(tl)Alz (tl):| X
0
A+ il A - —iogt ~ 3
x[ae 0 e Jp[(0)+0(g )+ (14)

where we have used (&+ )2 2(6'_ )2 =0 and

IfI,(t)zlfll+ (¢) . In section V, the coupling
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constant has been considered small

(izo.mj ; therefore, we will ignore the
@y

sentences of g’ and higher order in the
following relations.

Now the reduced density matrix of the atom can
be obtained by tracing out the cavity field
degrees of freedom as follows:

ﬁa(t) ZT’”/ [:51(1)] :T’”f [ﬁ,(O)]+

T’:('[A;—l (tl)A;z (4)p,(0)
XA, (ZzA)An (Zg )]
+Trf[A“Stl )A,,(t,)p,(0)
x Ay (6) A7, ()] x
+7:rf[AIISZI )4, (), (0)
x4, (6,) A4, (t,)]
+T’”_/'[A1+1 (¢ )A1+2 (4,)p,(0)
| }A (6) A7 (1))

x[éﬁoﬁ—e*iwo(trtl) +6.—6.+eiwo(trtl)]+

N A (1) A5(1,)
+igp,(0)| dt Tr{ Q27802 )
’! T A, () A, (1)

= 510t

x[67¢" +67¢
~ig [ dnTr, | A} (6) A5(0) + A, () 4, |x
0
15, (0) (15)

% |:Of\_+é'a)0t1
Let the initial density matrix of the total system
be a product state as follows:

p1(0)=p,(0)® p,(0)

A - —iogt

10 e

(16)

where p,(0) is the initial density matrix of the
two -level atom and p,(0)is the initial density

of cavity-field. We assume that the field is
initially in a two-mode f-deformed coherent

state|21,22,fpf2>’

ﬁf‘(o) =|Zl,22,f1,f2><21,22,f1,f2| =
= 3 G, h)C, (5 f)x

)51 =

XC:](Zl,fl)C:z(Zz,f2)|n1,n2><n1,n2| (17)
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where C, (z,,f) = N—j (N, is the 1 [f’ 0)4,4)4,,5) | =
(1,2 (n)! - )
" <nl,n2 (0)4;,(t,)4;,(t,)|n,,m,) =0
normalization constant) and z; = |Z |e " [59]. =
(20)

The states |Zl,22, fis f2> are defined as right
eigenstates of the f-deformed annihilation Try [A’ Y )A ()P (O)A’ 122 )A n(t )J
operator 4,4, =4, f,()a, f,(4,), i. e. =S (nemy 5 () A6, (0) %
A A KB n,=0
Az A=z ) el m) =0
Now we use Tr,[3,(0]=5,(0) and the 7o [ 4,(6)4,(5)p, (004, (1) 4, (1) | =
following relations (see Appendix for details): i ~ ~ n

g (see App ) _ 2_0<n1,n2 |4, (1) A4, (), (0) %
Tr, [ 45, 6) 2,6)5,(0) A, (1) A, (1,) | = <A () 2 (0)| ) = 0 on
= 3 (o A5 (1) A7 (1), (0)% where we have defined
Xy (6) 4 (6)|mom) = 71(m) = (D f2 ) = £ ()
= Z n HZ‘CH l(Zl’f)‘ ‘an 1(22’f2)‘ 72(ny) = (n, +1)f22(”2 +1)_”2f22(n2),

iy = 2

xexp{ iloy,(n, =)+ @,y,(n, =D][t, - ]} —I(Zl’fi)| fl nl] nl—l(ZlﬂfiX )

18 2
R R R R (%) G, 1(Zzaf2)| =17 nzj (Zzafzj ’
Trf[A“(ll)A”(ll)pf’(O)A“(tz)A”(lz)}: Cnl(zlaf‘l)| =/ n1+1)| nl(zpflr,
:n1 %7 <n1,”l2 |A11(t) 2(t )pf(o)x s (Zznfz)‘ =f2 n, +1) an_l(zzﬂfz)‘z (22)
<A} (L) A7 (4)| mymy) =
Therefore, we obtain
Z (n, +1)(n, +1)x :
0 PO =Tr,[ p, (t)} 2 (s |y (0| m)
X[Co o ) |Ci 0 )] 5O
xexpii[wy,(n)+o,7,(n)][t, -] e 5
{ (VAL 27200 )15 } (19) Z nn2 ,’.1_1(21’f1)‘ X
Tr, | 4,(6) 41,(6)p,(0) | = g jdt jdt oz f)f ‘
xe *1[0171(’71 D+, (ny =Dl =4 ]
= z<n15n2 ‘Au(t )A (t )pj (0)"/‘1’ > =0
ny,n,=0
Tr, [ 4,(1) 42005, (0) | = “BO)[ 676 e 6T |+
- . . X ) ("1+1)("2 +1)x
= <n1’n2 ‘An (1,)4,,(1, )pf(o)‘n15n2>:0 Jid = 5
1y =0 +g Idtljdtz x n+1(215f)‘ n+1 ZZ’fZ)‘ x x
‘ ‘ xexp{ [0)17/1(”1)+60272(nz)][f2 _tl]}
Tr,| p(0)A4 (¢ t :
7”/ [,0 ( ( ) ( ):| X/Sa(o)l:éjoﬂ_—e—mo(tz—tl)+6_—Of~_+emo(t z])] (23)
= > (n.m,|p, (0)A;,(t,) A}, (t,) n,,ny) =0
ny,n,=0
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If we use the rotating wave approximation (with
ignoring the term A/ 47,67 + A, A,,6; in the
Eq. (8)), we have

Yooy (DA, ()G e™™
Hl(t)_ h |:+A11(t)A12(t) A+ ta)ot:| (24)

The time-evolution U ; is given by:

01(1,0) = Texp[—%jl:],' (t)dt} _
0

:l_%j]:]; (tl)dtl +

0

i\ ul ~ A
+(;’j gdafdtzH;(tl)H;(t2)+---=

0 An(t )Alz(t) el

PGV A
R | xo—*e"“’otl
+(— dt, [ dt
i) fn s ) dn)

At iogh

XOo e

{ () A (1,)67e } s
+A,(6)A,,(t,)6" ™" 25)

If we use the relation (13), we have

t ~— —lapt
' (1,0) = 1—igfds, | @) A@)5 €™ + |
p]( ) gZI; |: An(t )AIZ (t )6_+etwot]

Rty A,l(t )A,z(t Y6 e 4
+(e) M‘”{ Ay (1) A, (1) }

Jagee e,
AH(t )Azz(t )o e

w .f e VA, ()6 e ™" +
/71(0){1+1g£d{ A, (1) A, (1)6 €™ }L

ot [ () A ()6 e +}
+(ig) [ dt dt{“ 12 G+ g x
(ig) ] + Ay, (1) 4, (1)6 €™

|:A11(t )Alz(t )G e e :|+ -} =
+4,,(t, )Alz(t )G e "

A“(Z )A,Z(t )G e
An(t )A12(t) e

A Otdt (t)Az(t)ae’”’“’2+
+igp, ( )£ |: A“(t )A12(t )&+etwgtz +

—p,(O)——lgIdl‘ |: :| A1(O)+
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e {:dtl ;O’dt L (6)4},(6)5,(0)4,, (1) }

1676 ™

+o72 tdt tdt (t ) 2(t ):01(0) (t )
8 .[) IJ.O |: (Z )A+ A —m)U(tz tl)
+O( g3)+---
(26)
In this section, we will also ignore the sentences
of g* and higher order in the following relations

because the coupling constant has been
considered small (izo.mj as the state of
a)O

without rotating wave approximation. By using
Eq.(13, 15, 16, 18-22), we have

P (t [/’1 )]zn;i=0<”1>”2|/51'(t)|”1>”2>:

= Trf (/31 (0))
_ (t )A1z(t )Oﬂ:e_motl
T e

(t )A,Z(t )G e 4
vighy O deTr { Ay (1) A,y ()67 }

+g2J.td11JJdeTI” {A;l(t )A 2(t )pI(O)All(t ) :|

Iz(t )" o+ ’a’u(tz —)

+ngdtlj;ﬁzn{ A, (6)A,(1)5,(0) 4,1 }

><A1+2(t ) 56 e —iay (1= [])

o

=p,(0)+
)y nan
t t 1=
+g2j0dtlj.0dt2 " 1(Zlﬂf1)‘ ‘C, 1(Zzafz)‘

1[“’171(”1 D+o,7, (ny =D, 4]

X/Sﬂ (O)I:é\:o,\jeiwo(tz_tl):l n
2 (m+1)(n, +1)

. . ny,ny =0
+gzjdtljdt2 X Cr:l+1(21’f1) n+1(22’f2)‘
0 0

Xei[wl}/l (n)+ary, (m)ll, =41

xp,(0)[ 676 e | 27)
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We assume that the two-level atom is initially
prepared in a coherent superposition of the

excited state |2> and the ground state | 1> ,

= >.C/Cl|t

0,k=1,2

p.0)=y),

)| +|cs] =1 (28)
IV.DYNAMICAL PROPERTIES OF THE
ATOM

In this section we shall study the effect of
counter-rotating parameter
deformation on the various atomic properties
including population inversion, the quantum
fluctuation of atomic dipole variables and the
atomic linear entropy.

terms and

A. Atomic Population Inversion with and
without the RWA

Quantum interference in phase space is said to
result in the revival of the atomic inversion
[60].
phenomenon is the quantum coherence resulted
from the interaction between the cavity-field
and the atom. lonization detectors have been

Therefore, origin of this non-classical

used to monitor the atomic beam exiting the
cavity [61].
density operator (15), in the absence of the
RWA, the atomic population inversion at time ¢

By using the reduced atomic

is obtained as follows:
W(0)=(6.(0)=Tr,[ 5, (6. ]=(1
+(2|5,(16.]2) =

=B+ Bg’ Idtjdt y (n,+1)(n, +1)

n,1ny =0

M@Jﬂmmpﬁﬂ

P, (1)0.

xexp{ [a)171(n1)+a)272(n2)_a)0][t2 _tl]}+
+Bg’ [dt [dt i 1, X
n 1(Z1af)‘ = 1(22’f2)‘
xexp{ —iy,(n, =)+ @,7, (n, = 1) + &, 1[1, — 1,1}
(29)
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Here, we used

=[2)2[=1X1],

By changing the integration

_ |2 12
—|C2| _|C1| :

variables as follows:

u=t,—t
V=i, +1
dudv = 2dt,dt, (30)
We find:
W(t):B{1+2g2t Y (n,+1)(n, +1)x
ny,ny =0
n1+1(ZI’f)‘ " +1 Zzafz)‘
Sm[a)lyl nl)+a)27/2(n2 a)ojt
a)171(”1)+a)272(n2) @,
+ktZM%nA%ﬂ\%&%ﬂﬂ
Szn[ 1) 272( n,— +a)0]t
a)ly/l(nl—l)+ .7, (n, —1)+a,
(1)

If we use the relation (27), in the presence of the
RWA, we have

W,()=(6.(1))=T. Duw]( 5. (1) +
+H2|p0e.|2)=B
|C’| g jdtjdt S (n +1)(n, +1)x

(zl,fl)\ n2+l<zz,ﬁ>\
xexp{il@y,(n)+a,y,(n,)—w,lt, 1,1} -
—|C| g jdtjdt Z R
\%K%ﬂ\nm%ﬁﬂ
xexp {—i[ay,(n,—1)+,y,(n, - 1)+ o, 1[t, - 1,1}

(32)

From (30) and it follows that:
2 1|2
W,(t)=B++2g { [e4 5 (nl +1)(n, +1)x

(n,+ 1)‘2

sin| @7, (nl ) T 0,7, (nz

ny, nz

C”2+1 (Zz"fz)
)—a)()]t_
w171(n1)+a)272 (nz)_wo

2 ® 2 2
_|C1’| ZQ”I”Z‘CnI—I(zl’J{l)‘ ‘Cnrl(zz’fz)‘ x
m =

C

x ny+1
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sin[a)ly1 (m =)+, (n, 1)+ a)o]t
oy, (n,=1)+a,y,(n,-1)+a,

In Fig. 1 we plot the population inversion W, (¢)

(33)

as a function of the scaled time @, , in absence

of the RWA, for an initially prepared excited
atomic state (C| =0,C; =1)interacting off-

®w .
resonantly (— =—%=35)with the two-mode
0 0

cavity field in three cases:

(i) non-deformed case with f,(n,) = f,(n,)=1,
q=1,

(i1) two-mode deformed case with

n;

lg -1

f(h) = , q=0.9,i=1,2,

n qg-—1

(iii) two-mode deformed case with

The deformation parameter q may be viewed as
a phenomenological constant controlling the
strength of the intensity-dependent coupling
between the atom and the field. Furthermore,
the choice of the nonlinearity function as

f(n)= lAQ__ll corresponds to the maths-
V noq-

type q-deformed coherent state [43]. In Fig. 2,
we plot the population inversion W, (¢) in the

presence of the RWA with the same values as
the rest of the parameter in Fig. 1. In the
absence of the RWA, the atomic inversion for
the degenerate two-photon non-deformed JCM
oscillates around zero and amplitude of
oscillations increases over time. We also see
that atomic inversion for the non-degenerate
two-photon deformed DIJCM (q=1.1) shows
slow oscillations in an irregular manner around
zero. We also observe that in the deformed state
(q=0.9), the collapse-revival phenomena can
occur and the amplitude and the time of
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collapse and revival oscillations increases over
time. In fact, the collapse-revival phenomena
can occur with the decrease deformation
parameter due to the deformed model under
consideration. As Fig. 2 shows, the atomic
inversion is always greater than the JCM and
DJCM model without the rotating wave
approximation (¥, (¢) > W,(¢)) . This means that

in the JCM and DJCM models beyond the
RWA, more energy is stored in the cavity field
and the atom tends to remain in the ground
This is caused by virtual-photon
processes.

state.

z=10; fg=10.1

wt
Fig. 1. Time evolution of the population inversion
W,(t) , in absence of the RWA, for a two-level atom

initially prepared in the excited atomic state
(C/ =0, C, =1) interacting off-resonantly with the

state|Zl,Zz; fl f2>for two-mode cavity field in
three cases (q=1, q=0.9, g=1.1). We have set

), (4]
|zl| =|zz| :|z| =10, =001 & =25
@, w, @,
z=10; Aq=x0.1
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Fig. 2. Time evolution of the population inversion
w, (?), in presence of the RWA, for a two-level

atom initially prepared in the excited atomic state
(C/ =0, C, =) interacting off-resonantly with the

state|Zl,Zz;f1f2>for two-mode cavity field in

three cases (q=1, q=0.9, g=1.1). We have set

|Zl| :|22| =|Z| =10,-£ = 0.01 G
@y @, W

B. Atomic Dipole Squeezing

The following slowly varying Hermitian
quadrature operators were considered in this
work in order to examine the quantum
fluctuations of atomic dipole variables and to
analyze the effect of CRTS on squeezing them

6’x ®= %(6—+e—iw(,t n 6_eil')“t) (34)

6.() = %(&*af‘%’ 67 (35)

The absorptive and dispersive components of
the atomic polarization amplitude are
represented by & and&,, respectively [62].

These components follow([5,,6,]1=i6./2,

which is the commutation relation. Thus, the
uncertainty relation of Heisenberg is

(a6, 0))((a8,(0)F) 2 %

Here, ((A6,(0)) ) =(67 (1)) ~(6,(1)is the

variance in J,(i = x,y) of the atomic dipole.

G.of 66

If the variance in &, satisfies the condition,
the component fluctuation for &,(i = x, y) is

squeezed

, (=xory) (37

(6.(1))

((a6,0F) <

Because <6‘f (t)> = % as the following will be

resulted 7,(t)=1-4(6, ()" -[(6. ()| <0, (=x
ory) (38)
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Now, we assume that the two-level atom is
initially in the state

1 1
=—|[1)+—|2 39
v}, =51 +12) (39)
If we use the relation (28), we obtain
1

Cl=C)=— (40)

1 2 \/5
In the absence of the RWA, we can write
(6,.0) =Tr,(p,(06.) = (U 2,8, |1) 4y
+<2| pa (t)alx | 2>
(6,@) =T (b, 8,)=(2,08,)
+(2|p, ()6, |2)
In the presence of the RWA, we have
<&1x (t)> - Y,:Fa (/3; (t)é-lx) = <1 ’b‘,‘ (t)é-lx 1> * (43)
+(2] 5,06, 2)
(6,0)=Tr(2,06,)= (1 2,06, [+ 44y

+(2

£L(06,,]2)
In Fig. 3, we plot the time evolution of F, (t)

corresponding to the squeezing of o, (t) , in the

absence of the RWA, for an initially mixed

. 1. .
atomic state (C| =C, =—=) interacting off-

V2

resonantly (ﬂ =& 5) with the cavity field
o, 0,

under the three different aforesaid cases. As it

can be seen, in the absence of the RWA, the

function F,_(¢)shows oscillation n an irregular
manner around ( £}, (t)=—1) and o, (¢) can be

squeezed for the degenerate two-photon non-
deformed JCM (g=1) and non-degenerate two-
photon deformed DJCM (q=0.9) in most of the
time regions. Furthermore, it is observed that
the function /|, (t)shows oscillation in an

irregular manner around (F|, (t) =-1) and

o,,(t) can be squeezed for the non-degenerate
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two-photon deformed DJCM (q=1.1) almost at
all the time.

We also observe that by decreasing the
deformed parameter, the amplitude and the time
of atomic dipole
increases. Physically, it is due to the deformed
model under consideration. In Fig. 4, we show
the effect of the RWA on the temporal
evolution of atomic dipole squeezing. As it can
be seen, in the presence of the RWA, the

squeezing oscillations

function F,, (t)oscillation in a regular manner
around (F, (t)=—1) and o,, (t) can be

squeezed for the degenerate two-photon non-
deformed JCM (gq=1) and the non-degenerate
two-photon deformed DICM (g=1.1, g=0.9) at
all time. This means that the influence of
counter-rotating terms leads to
oscillation atomic dipole
disappearance of dipole squeezing in some time
regions. In fact, by comparing Fig.3 with Fig.4,
we find that there exists destructive effect of
virtual-photon on dipole squeezing. In Fig.5,

irregular
squeezing and

we plot the time evolution of £ (¢t)
corresponding to the squeezing of o, (t), in the

absence of the RWA, for an initially mixed

. 1. .
atomic state (C| = C, =—=) interacting off-

V2

resonantly (& =& 5)with the cavity field
w0, @,

under the three different aforesaid cases. As it

can be seen, in the absence of the RWA, the

function F), (t) shows oscillation in an
irregular manner around (F], (t)=0) and
fluctuation ino,, (¢) is not squeezed for

degenerate two-photon non-deformed JCM
(g=1) and non-degenerate  two-photon
deformed DJCM (g=1.1, g=0.9) in most of the
time regions. In Fig.6, we show the effect of the
RWA on the temporal evolution of atomic
dipole squeezing. As it can be seen, in the
presence of the RWA, the functioany(t)

&3
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oscillation in a regular manner around
(F,(1)=0) and o,, () can be squeezed for the

degenerate two-photon non-deformed JCM
(g=1) and the non-degenerate two-photon
deformed DJCM (q=1.1, g=0.9) in exactly half
time range. This means that the influence of
counter-rotating terms leads to the time of
atomic dipole squeezing decreasing.

C. Atomic Linear Entropy

As a known fact, providing that the atom and
the field in the JMC are originally made in a
pure form, the atom-field system changes to an
entangled form when t>0. In this state, the atom
and the field individually are in mixed states.
The stability of a pure state is resulted when the
state’s quantum coherence is maintained along
its time evolution. Therefore, an initial state of
pure quantum ( ©) will be stable providing that

Trp* =1, at all times. The linear entropy [63]

S=1-Trp*> can be used to measure the

stability. The time evolution of the atomic
entropy replicates that of the entanglement
degrees between the field and atom. Greater
entropy will cause higher entanglement
between the field and the atom.

z=10; Ag=i04

h

0 20 40 G0 80
tant

100

Fig. 3. Time evolution of F}_(#) corresponding to
the squeezing of o, (), in absence of the RWA,

for a two-level atom initially prepared in a coherent

1
superposition  state (C/ =C, = E) interacting  off-

resonantly with the s’[ate|Zl,Zz;f1 f2>f0r two-
mode cavity field in three cases (q=1, gq=0.9,
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q=1.1).We have set|Zl| =|Zz| =|Z| = 10,
£ 00,8 =25
0, 0, o

z=10; Ag=10.1

at

Fig. 4. Time evolution of F, (#) corresponding to
the squeezing of &, (t), in presence of the RWA,

for a two-level atom initially prepared in a coherent

1
superposition state (C| =C; = E) interacting off-

resonantly with the state|Z1 »Zs f1 f2> for two-

mode cavity field in three cases (q=1, qg=0.9, g=1.1).

We  have set|Zl| :|Zz| =|Z| =10,£ =0.01,
@,

w _ @,

:—:5
@, @,

z=10; fg=10.1

0 10 20 30 40 50 60 70

Fig. 5. Time evolution of £} () corresponding to

the squeezing of o, (?), in absence of the RWA,

for a two-level atom initially prepared in a coherent

1
superposition state (C] =C, = E) interacting off-

resonantly with the s’[ate|Zl,Zz;f1 f2>f0r two-
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mode cavity field in three cases (q=l1,
g=1.1).We have

q=0.9,
set|Zl| :|22| =|z| =10,

[0 0]
£ 00,825
20 w0, o,
z=10; Aq=x0.1

0 1t 20 30 40 50 60 70
whyt
Fig. 6.Time evolution of F, (#) corresponding to

the squeezing of o, (¢) , in presence of the RWA,

for a two-level atom initially prepared in a coherent

1
superposition state (C] =C, = E) interacting off-

resonantly with the state|Z1 »Z55 f1 f2> for two-
mode cavity field in three cases (q=1, g=0.9, g=1.1).

We  have set|Zl|=|ZZ|Z|Z|=10,£=O.01,
o

o _o_,

W, @

In the absence of RWA, we can write

o0

Z<n19nz 1,51 (t)| n19n2>

ny,ny=

P.()= Tr, [pl(t)

(45)
Then, in the absence of RWA, the time
evolution of the atomic linear entropy is given
by

S, =1-Tr,(p2(0)) (46)

In the presence of RWA, we can write

00

Z<”1an2 lﬁ} (t)| ”1:”2>

ny,ny=

pL(0)=Tr,[p}(1)]=

(47)
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Then, in the presence of RWA, the time
evolution of the atomic linear entropy is given

by
S, =1=Tr, (P2 (1)) (48)

z=10; Ag=10.1

0.5

et
Fig. 7. Time evolution of the atomic linear entropy

S,,(t), in absence of the RWA, for a two-level
atom
(C] =1,C, =0)interacting off-resonantly with

initially — prepared in ground state

the state|Z;,2,, fl f 2> for two-mode cavity field in

three cases (q=1, q=0.9, g=1.1). We have set

|Zl| :|22| =|Z| =10, = 0.0l,& =5

@, W, O,

Fig. 8. Time evolution of the atomic linear entropy

S,,(t), in presence of the RWA, for a two-level atom
initially prepared in the ground state (Cl’ =1, C; =0)
interacting off-resonantly with the state|Zl,Zz; fl f2>

for two-mode cavity field in three cases (q=1, q=0.9,

&5

Vol. 15, No. 1, Winter-Spring, 2021

q=1.1). We have set|Zl| =|Zz| =|Z| =10,
£ 0.0, =% 5
0, o, o,

In Figs. 7 and 8, we plot the time evolution of
the atomic linear entropy in the absence and
presence of the RWA respectively (S,,,S,,).

From Fig. 7, it follows that in the absence of the
RWA, the atomic linear entropy in the two-
photon non-deformed JCM behaves quasi-
periodically with local maxima and minima in
the course of time evolution. The presence of
the local maxima and minima is, respectively,
duo to the entanglement and disentanglement
between the field and atom. For the non-
degenerate  two-photon DJCMs  under
consideration, the atomic linear entropy
exhibits a chaotic behavior. We also observe
that the maximum and the minimum atomic
linear entropy amplitude were influenced by the
deformation parameter. In fact, the minimum
values of the entanglement between the atom
and field can be increased by decreasing the
deformation parameter. By comparing Fig. 7
with 8, we notice that entanglement amplitude
decreases by the rotating-wave approximation.
Physically, it is due to the influence of counter-
rotating terms on the atomic linear entropy.
This shows the significance of the effect of
virtual-photon field on the atomic linear
entropy. We observe in the two-photon non-
deformed JCM (g=1) with and without the
RWA, the maximum entanglement amplitude
increases with the time which means that the
atom and the cavity-field combined system can
increase its initial maximal entangled state
periodically.

V. SUMMARY AND CONCLUSION

In this paper, we studied dynamical properties
of an effective two-level atom coupled to a two-
mode f-deformed cavity field with and without
the rotating wave approximation. Then, we
investigated the effect of the counter-rotating
term on temporal evolution of various non-
classical properties of the atom, i.e., atomic
population inversion, atomic dipole squeezing
and atom-field entanglement. Particularly, we
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compared the numerical results for three
different values of the deformation parameter q
(q=1, g=1.1, q=0.9) with and without the
rotating wave approximation. We observed in
the absence of the RWA, the atomic inversion
for the degenerate two-photon non-deformed
JCM oscillates around zero and amplitude of
oscillations increases over time. We also saw
that atomic inversion for the non-degenerate
two-photon deformed DIJCM (q=1.1) shows
slow oscillations in an irregular manner around
zero. We also observed that in the deformed
state (q=0.9), the collapse-revival phenomena
can occur and the amplitude and the time of
collapse and revival oscillations increases over
time. Furthermore, it was observed that the
atomic inversion is always greater than the JCM
and DJCM model without the rotating wave

approximation (W, (t) > W, (t)) .

It was also seen that in the absence of the RWA,
the function F,

1x

(t) shows oscillation in an
irregular manner around (F, (f)=-1) and
o, (t) can be squeezed for the degenerate two-

photon non-deformed JCM (gq=1) and non-
degenerate two-photon deformed DJCM
(@=0.9) in most of the time
Furthermore it is observed that the function

regions.

F. (t) shows oscillation in an irregular manner
around (£}, (t)= -1) and o, (t) can be

squeezed for the non-degenerate two-photon
deformed DJCM (q=1.1) almost at all the time.
It was also seen that in the presence of the
RWA, the function F, (f) oscillation in a

regular manner around ( F,,(1)=—1) and &, (¢)

can be squeezed for the degenerate two-photon
non-deformed JCM (q=1) and the non-
degenerate two-photon deformed DIJCM
(g=1.1, g=0.9) at all time. It was also seen that
in the absence of the RWA, the function F| (¢t)

shows oscillation in an irregular manner around
(F, ()=0) and fluctuation ino, , (t) is not
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squeezed for degenerate two-photon non-
deformed JCM (g=1) and non-degenerate two-
photon deformed DJICM (g=1.1, g=0.9) in most
of the time regions. It was also seen that in the
presence of the RWA, the function F,, (¢)

oscillation in a regular manner around (
F,, ()=0) and oy, (t) can be squeezed for the

degenerate two-photon non-deformed JCM
(g=1) and the degenerate two-photon deformed
DICM (g=1.1, gq=0.9) in exactly half time
range. It was also observed that in the absence
of the RWA, the atomic linear entropy in the
two-photon non-deformed JCM behaves quasi-
periodically with local maxima and minima in
the course of time evolution. The presence of
the local maxima and minima is, respectively,
due to the entanglement and disentanglement
between the field and atom. For the non-
degenerate  two-photon  DJCMs
consideration, the linear
exhibited a chaotic behavior. As it was seen, the
maximum and the minimum atomic linear
entropy amplitude were influenced by the

under

atomic entropy

deformation parameter. In addition, we
observed that both factors, quantum
deformation and counter-rotating terms,

reinforce each other in the occurrence of
nonlinear effects.

APPENDIX

In this appendix we prove the Eq.(18-21). First
we prove the Eq.(18)

AP HOYABEROYRSYRAIE
= > (mm A5 (6) 47, (1), (0)
x’:ln (¢, )1:112 (¢ )| n, n2> =

ny 1y =0
= i(wlzzlffll-#a)z;lz*Az)tl o
= n,n, A%

ny,n,=0
X exp —i(a)lzzllﬂ:ll +a)2212+1212)tl}><
X exp i(a)lzzlfzzll +a)21212+1:12)t1}x
xA; exp{—i(a)lflffll +a)2121;1212)t1}x
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xﬁo(pmw@i)
(oo o)

xexp{ (a)lA A +a)2A A ) }

><A1 exp —z(a)lA1 4 +a)2A2A2) 2}><

x A, exp i(a)lAfA1 +a)2A2+A2)t2}x
xexp{—i(wlAfAl+a)2A2+A2)t2}|nl,n2>

i i\/nlnz(nl'+l)(n;+l)><
S ) f () £ (1) £ (2 1)
><C (Zl,f)C f)><

Zy5 ]2

/)€, (Zzafz)
n1 1) —nif? (nl')]tl} x
2(ny+1)—ny f) (né)}tl}x

(Zl,f)x

12

G Gz
xexp{ n1+1

xexp{ n2+1

'+1X

xe;;p —ieoy[n 1} (n,) - (nl—l)flz(nl—l)]tz}x
Xexp|—i® [”2f1 (n 2)—(n2—1)ﬁ2(n2—1)]t2}x

X8, 10,
= ! 2 ’ 2
= Z mn, Cnl—l(zlﬁ.fl)‘ an—l(zzafz)‘ X
ny,ny=0
xexp{—il@y,(n,—1)+o,y,(n, ~D][t, -1}

(A.1)

where we have used the Eq.(4, 9, 22) . Now we
prove the relation (19)

Trf |:‘2111(t1) 2(t )pf(o) (t ) 2(tz):|:

- i <l’ll,l’l2 |1a]1(tl)‘2112(t1)bf(0)x

1y =0

XA;(tz)A;z(t2)|nl,n2> =

= i <nl,n2|exp{ (a)lA A +a)2A A ) }Al X

ny,ny=0

X exp —z(a)lA A +a)2A A t}
X exXp z(a)lA A +a)2A A }><
A4,

:Ju

><A2 exp{—z(a)lA1 A +w, A4, y

0
x Z Cn{(zl’fl
’71 nz 0

ny (Zl’-fl)crz

n ( 2’-](2)
2
(2252 )| s ) (o |
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xexp{ (04 4+ 0,4 4,)1 }><
x A exp{—z(a)lA A+, 4; A, ) 2}x
xexp{ (a)lA A +a)2A A ) }

><A2 exp {—z(a)lA1 4 +ao2A2 Az) 2}|nl,nz> =

i i \/n1+l)(n2+1)nl’n; x

n,n,=0 nj,n)=

><f(nl)ﬂ(nz)ﬁ(n{)ﬂ(né)cn{ (2. /)%
xC, (2,,1,) Gy (21, 11) :z(Zzafz)

xexpiio[(n —1) £, (n]—=1)—n/f t}x
X exp i@, [(n;—l)f1 (n2—1 n2f2 n) ]tl}x
X0,

(nl +1)—n1f12 (nl)]tz}x
Z(ny+1)=n, [y (nz)]tz}x

n, +1)(n, +1)

><exp{za)l (n1 +1) /7
xexp{za) [(n +ll
2 (

X0,

ny, nl+1 nh,n, -

ny,ny =
2
XQNMM%%AW

xexp{i[a)171(n1)+a)272(n2)][t2 _tl]} (A.2)
where we have used the Eq.(4, 9, 22). Now we
prove the Eq. (20)

Tr [21* ()AL, ),3,(0)]:
—Z%M ()AL ()P, () mym,)

Ny =

0

=y <nl,n2|exp{ (a)lA A +o, 44 ) } A
n,ny =0

X exp —i(a)lAfA1 +a)2A2+A2)tl}x

X exp i(a)lAfA1 +a)2A2+A2)tl}A2+ X

X exp —i(a)lA+A +a)2A2+A2)tl}x

<3 A )
nl( 1sf1) n2(Zzsfz)|n11n2><nlan2|”1’n2>
(nl'+l)(n; +l)><

<, (r +1) £, (7 +1)

XCn;(Zlaf) nz (Zzafz) (pr) :;g (Zzafz)x
X exp ia)l[(n1+1)f1 (n/+1)=n/f? (nl')]tl}x
X exXp i, [(n; +1) £, (ny +1)=n} 17 (n;)]tl}x
) S, =0 (A3)

nyn+17 1y ny+1% ) ny “nh ny
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and
Trf [12111(11)12112 (tl ):b/ (O):| =
= 3 (om0 A ()5, (0)

ny,ny =0

= i <nl,n2|exp{ (a)lA A +a)2A Az) }
ny,n, =0

><Al exp{—'(a)lA+A +a)2A+A ) }><

xexp{ (a)lA A +a)2A A ) }

(044 +0,4 1) l}x

I’ll,l’l2> =

><A2 exp {—

X nl’,n;><n ,n, nl,n2>=
= 3 (1) £ (- )
‘ZAﬁ) HEWAE
(Zl’ﬁ)c2 )X
xexp{za) [(nl' )f12 (nl'—l) f ( )] 1}
><exp{za)2 [(n; )f12 (ny—1)— nfy (l’lz)] }
Xé‘rq,n{—l nz,r1g—15n{,r115n§,"z =0 (A4)

Now we prove the Eq. (21)

0

> (|45 () A7 (1) 5, (0)
iy =0
z(t ) n19n2>

><A+ (1, )A
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