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Abstract— In this paper, we study the coherent
transport of single photon in a coupled
resonator waveguide (CRW) where two three-
level A-type atomic ensembles are embedded in
two separate cavities. We show that it is possible
to control the photon transmission and
reflection coefficients by using classical control
fields. In particular, we find that the total
photon transmission and reflection are
achievable. In addition, the two atomic
ensembles can act as controllable mirrors of a
secondary cavity (super-cavity) which
represents localized photon states and makes it
possible to store and retrieve single photon in
the region sandwiched between the two atomic
ensembles.
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I.INTRODUCTION

Since the innovation of quantum information
protocols such as quantum cryptography [1],
quantum teleportation [2], and quantum
communication [3] several systems have been
proposed to implement quantum networks [4].
Among all the proposals, quantum optical
systems have attracted considerable attention.
On one hand, photons are ideal carriers of
quantum information because they are fast,
readily available, and robust against
decoherence. On the other hand, atoms
represent reliable and long-lived storage and
processing units [5].

Up to now, many single-photon sources, such
as semiconductor nano-crystals [6] and
quantum dots [7], have been suggested and
experimentally realized. However, in order to
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use single photon to transfer quantum
information between different nodes of a
quantum network it is necessary to find
techniques and instruments for coherently
control of single-photon transport and storage.
In recent years many efforts have been exerted
to implement devices that can control photons
by photon-photon interaction [8, 9] or via
nonlinear media [10]. Furthermore, the control
of photon transport by an additional classical
field in an artificial medium has been studied
[11]. On the other hand, many methods have
been proposed to realize quantum memories.
For instance, photon storage and photon
retrieval based on photon echo [12] and
electromagnetically induced transparency
(EIT) [13] have been investigated.

One of the systems that has recently been
considered for storage and coherent transport
of single photons is one dimensional coupled-
resonator waveguide (CRW) [14] doped with
two- or three-level atomic systems [15-17].
Coupled resonator waveguide is a type of
waveguide based on coupling of individual
resonators through evanescent fields [14] and
can be realized by using the coupled defect
modes in photonic crystals [18] or coupled
superconducting line resonators [19]. A
theoretical study on scattering of a single
photon from a two-level atom in a one
dimensional (1D) CRW [15] shows that
single-photon transport can be controlled by
manipulating the atomic transition frequency.
Particularly, at the resonance condition the
atom acts as a perfect mirror and reflects the
photon completely. Inspired by this result,
Zhou et al. proposed [17] a quantum analogue
for the Fabry-Perot cavity, the so-called
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quantum super-cavity which is composed of
two two-level atoms embedded in two separate
cavities of a CRW. At the resonance condition
the two atoms act as two highly reflecting
mirrors and form a secondary cavity (super-
cavity) which can confine the photon. Thus,
not only the coherent control of single-photon
transport is possible but also the photon can be
stored and retrieved in the region sandwiched
between the two atoms by controlling the
transition frequencies of the two atoms.

With the purpose of generalizing this idea, in
this paper we study the discrete scattering [15]
of a single photon in a 1D CRW where two
non-interacting A-type three-level atomic
ensembles are located in two separate cavities
of CRW. We show that the transmission
spectrum of a single photon can be controlled
by adjusting the oscillation frequency and the
Rabi frequency of a classical external field.
Besides, the investigation of quasi-bound
states reveals that in the absence of dissipation
processes and under some certain conditions a
perfect super-cavity appears. Therefore, one
can store and retrieve a photon in this cavity
by adjusting the classical control field.

This paper is organized as follow: in section II
we introduce the physical model of the system
under consideration. In section III we
investigate the transmission spectrum of a
single photon. In section IV we study the
quasi-bound states of the system and derive
the conditions under which a super-cavity is
formed. Finally, we summarize our
conclusions in section V.

II. PHYSICAL MODEL

According to Fig. 1, we consider a 1D CRW
which consists of N identical single-mode
cavities with resonance frequency «,. We

assume N is large enough that periodic
boundary condition becomes reasonable. Each
cavity is weakly coupled to only nearest
neighbors by hopping constant & .

114

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors ...

HHMMWHHHWH

Fig. 1 Schematlc diagram of a CRW doped by two
A-type three-level atomic ensembles in =+d
cavities. Each ensemble is coupled to the quantum
field of the corresponding cavity and a classical
control field.

Therefore, we can use the tight-binding
Hamiltonian [15], which is the photonic
analogue of the tight-binding approximation in
solid state physics [20], to describe the CRW
(h=1):

H, :a)OZéJTéJ —§Z(ajal+1+hc) (1)
J J

where éjT (d,) is the creation (annihilation)
operator of the jth cavity mode. Because of the
translational ~symmetry of CRW the
Hamiltonian (1) can be diagonalized by using
the Fourier transform,

1kjL A (1)

a = \/_ Ze
where L is the lattice constant. So we have
=Y »al4,, )
k

with nonlinear dispersion relation
o, =w,—2&coskL, (3)

which is similar to the dispersion relation of
an ideal electronic crystal [20] and defines an

energy band, [a)o -2, 0, + 25] , for the photon
propagation in the CRW.

Furthermore, the two non-interacting A-type
three-level atomic ensembles are located in
two separate cavities of the CRW. For
simplicity, we choose the central cavity of the
CRW as the coordinate-axis origin. The first
ensemble with N; identical atoms and the
second with N, identical atoms are located at
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the -dth cavity and dth cavity, respectively. In
order to implement such a system, natural and
artificial A-type atoms [21] or three-level
Josephson junctions [22] can be used. We
denote the ground state, the meta-stable state
and the excited state of the ith atom in the Ith

|a>FI) and

. |
atomic ensemble as |g>() .

|e>(|)(| =1,2), respectively. As is shown in

Fig. 1, the |e>:|)—>|g>i(')transition is coupled to
its corresponding cavity field and a strong
classical field with the oscillation frequency
v\ and the Rabi frequency Q, matches to the

c

|e>(') | > transition of all atoms in the Ith

ensemble. Thus, the free Hamiltonian and the
interaction Hamiltonian of atoms are,
respectively, as follows:

=3 Y@ e) e |+ 0" [a)"(al)

I=1,2 i=lI

H =Y Y10 @, |o)" (| +he))

1=1,2 i=l (6)
+0, e a) e |+heo),

)

where " and ! represent the excited and

the meta-stable frequencies of the Ith atomic
ensemble. The interaction Hamiltonian is
written in the rotating wave approximation and

9" is the coupling constant of the ith atom of

the Ith ensemble to its corresponding cavity
field, that we assume is equal for all atoms of

each ensemble: g =g,. Consequently, the
total Hamiltonian of the system reads:

I—izl-ic+l-ia+l-i,. (7)
In order to omit the explicit time dependence

of the total Hamiltonian we transform it into a
rotating frame of reference which is defined by

the unitary transformation U = exp(—il—iot)

where
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=z

Hy=> > v a) (] ®)

1=1,2 i

We also introduce the -collective atomic
transition operators as follows:

2ol
“2| )" e].

i=l1

~(|)

)

~(|)

ﬁ\ ﬁ\

= (1)

The operators &, and 0(') describe the

transition of one atom of the Ith ensemble from
the ground state to the excited state and from
the excited state to the meta-stable state,
respectively. In the large N, limit and under

the low excitation condition they satisfy the
bosonic commutation relations. Finally, in the
rotating frame and in terms of the collective
atomic operators the total Hamiltonian of the
system takes the form:

H=H_+H,+H/;
H;:Z(a)" a"”a L+ AVS (l)f (I))

1=1,2

(10)
= > {g,yN (@ 1)da“)+h.c.)
1=1,2
+Q, (6L +he))),
where AV =@ -v" is the detuning

between the classical field and the meta-stable
state of each ensemble. By considering the

interaction HamiltonianH |, it is clear that the
non-interacting atomic ensemble acts as a
single atom whose coupling constant to the
quantum field is enhanced by the factor /N, .
Thus, the two non-interacting ensembles
strongly couple to the light field and, as a
quantum nodes, they can perform a fast control

for the single-photon transfer. The total
excitation operator

N =3+ T3 ) el +fa) o

1=1,2 i=1

“4)
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commutes with the total Hamiltonian
([I—T N } =0) i.e., the total excitation of the
system is a constant of motion. Therefore, in
order to study the coherent scattering of single

photon it is sufficient to consider only one
excitation subspace.

ITI. TRANSMISSION SPECTRUM

A. Scattering equation

To investigate the transmission of a single
photon through the system, we consider the
most general stationary eigenstate of the
system in one excitation subspace:

|Ev) =2 u,(i)4][0gg)+u,"|0ag)
: (12)
+u”|0ga)+u."|0eg)+u|0ge),

where u, (j)is the probability amplitude for

finding the photon at the jth cavity of the
CRW. The first number 0 inside the kets
shows the vacuum state of the CRW field. The

state |e>I (|a>I ) represents a Dicke state [23] of

the Ith ensemble that one of its atoms is in the
excited (meta-stable) state and u"’(u'") is the

corresponding probability amplitude.

By using Eq. (12) in the eigenvalue equation
H |Ek>: E, |Ek>, we arrive at the following

discrete scattering equation for u, (j):

[E, _a)o_zv|(j)]uk(j)=

I=1.2 (13)
=gl (J +D+u(j =Dl

where

gIZNI(Ek _A(I)) S .(14)

V| (J): (Ek _a)e(l))(Ek _A(U)_QIZ j.(-D'd

Furthermore, we obtain:

116

u=

Coherent Transport of Single Photon in a Quantum Super-cavity with Mirrors ...

(_ gl\/NI(Ek _A(I))

) (Ek_a)e(l))(Ek _A(I))_le

gl\/N—IQI

: (Ek _a’e(l))(Ek _A(I))_le

u ((=D'd),
(15)
u ((=D'd).

We can consider Eq. (13) as a Schrodinger
equation in which u, (j)can be interpreted as

a wave function for photon. In this manner,
Eq. (13) shows that each atomic ensemble acts
as a delta potential, Vi, which is energy-
dependent and its strength is related to the

parameters of the classical field, i.e., v"" and

Q,, so it can be controlled by adjusting these
parameters. Depending on the relation among
the photon energy, the parameters of the
classical field and the atomic transition
energies the potential may be attractive or
repulsive.

B. Transmission coefficient

In order to determine the single-photon
transmission coefficient we consider an elastic
scattering of a single photon which comes
from the left with the energy o, and the wave

number K. Since the potential V,(]) is zero

except at the points j =—d and d the wave

function of the photon can be written in terms
of the asymptotic plane waves as follows

et re j <—d
u (j)=qt,e+re™™ —d<j<d, (5
t et j >d

where ¢ and t denote the reflection and
transmission amplitudes of  photon,
respectively and t; and rq show the probability
amplitudes for finding the right-going and the
left-going photons in the region sandwiched

between the two atomic ensembles.
Considering  the  continuity  condition,
u, (zd " )=u,(xd"), and the scattering

equation (Eq. 13) at j =—d and j =d results
in the following transmission amplitude for
photon:
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t =4&%sin” kL (e4ik|‘d —1){452 sin’ kLe4ikLd
. . -1
+|:f1(k)_vle4lk|_d :||:f2(k)_vze4lde i|} ,

with f, =V, -2i&sinkL .

It is clear that by controlling the potential via
changing v or , one can control the

C
transmission coefficient. In Fig. 2 we plot the
transmission coefficient versus the wave
number of the incident photon. In all these

plots when E, =A" =A"® the transmission

coefficient is equal to 1. This total
transmission is due to the electromagnetically
induced transparency (EIT) phenomenon [24].

Indeed, the quantum interference between the
two atomic transition channels causes
transparency of the medium for the incoming
photon and the elimination of the back
travelling light. In addition, since the hopping
constant has the role of guidance for photon in
the CRW and g, shows the strength of the

atomic potential, an increase in the ratio
g, /2¢ leads to a decrease in the transmission

coefficient. This fact can be
comparison of Fig. 2a and Fig. 2b.

seen by

Another important point is that for some
values of the wave number the transmission
coefficient is zero. The zero transmission at
k =0,+7z is due to the energy band of the

CRW and it is independent of Qg,. As we

pointed before (Eq. 4), the periodicity of the
CRW results in an allowed energy band for the
propagation of light which acts as a photon
filter such that a single photon with an energy
outside this band do not interact with CRW
and do not propagate through it. The
mentioned wave numbers represent the
boundaries of the energy band (see Eq. 4).
Thus the group velocity of photons with those
wave numbers is zero.

(6)
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Fig. 2 Transmission coefficient of a single photon
through two A- type three-level atomic ensembles
in a CRW versus wave number for different values
of the relevant parameters:

E=1,0,=3,0=1Q,=1, 0" = @ =1, and (a)
d=10,A” =2 A® =2,9, /N, =05, g,{/N, =1,
(byd =10, AV =A® =2,9,/N, =1, g,/N, =2,
(©d =10, AV =A? =1,g, /N, =0.5, g,/N, =1,
(d)d =3, AV =A® =2,9,/N, =05, g,\/N, =1.

However, Fig. 2c¢ shows that EIT can
overcome to the energy band and photons that
in the absence of ensembles could not
propagate in CRW, now totally transmit
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through EIT phenomenon. Other total
reflections occur at singularities of the
potential. For these wave numbers the

ensemble forms an infinite potential which
prevents the transmission of photon. It should
be pointed out that the oscillations shown in
the transmission spectrum arise from the
multiple interference in the region sandwiched
between the two atomic ensembles and they
become less visible by decreasing the distance

2d-

IV.QUANTUM SUPER-CAVITY

In this section we investigate the possibility of
formation the quantum super-cavity by
considering the quasi-bound states of the
system.

A. Quasi-Bound State

As we found in the previous section each
atomic ensemble may act as a potential barrier,
so there is a potential double barrier which can
produce localized states in the space [25].
Photons can leak out of the sandwiched region
between the two atomic ensembles owing to
the finite width and height of the potential
barriers.  Therefore, the corresponding
localized state is called a quasi-bound state or
a resonant state. A resonant state is an
eigenfunction of the Hamiltonian under the
boundary condition that we have only
outgoing waves [26]. Therefore, we consider
the following solution for Eq.(13)

A e j<—d
u,(j)=<e+Be™ —d<j<d . (7
C 't j>d

The scattering equation (Eq. 13) together with
the continuity condition at j =—d and j =d

impose the following condition for the
existence of the state given by Eq. (18)
e4ikd — f](k )fz(k) (8)

V1V2

Thus if we prepare a photon in the sandwiched
region between the two atomic ensembles with
a wave number K that satisfies Eq. (19), its
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stationary state is a quasi-bound state as
Eq. (18).

B. Quantum super-cavity

Now, for simplicity, we assume that the two
atomic ensembles are identical: V, =V, =V

and f (k)=f,(k)=f (k). Thus Eq. (19) takes
the form:

v _ 1K)
£ 100

)

In this case, the system is symmetric with
respect to the origin so the wave functions
have definite parity. The plus and minus signs
in Eq. (20) correspond to the wave functions
with even and odd parity, respectively. By
considering this condition, u, (j)(Eq. 18) can

be written as follows for even and odd parity,
respectively

—sin(kLd )e™ U j<d

U (j)ocqsin(kLj) -d<j<d ,(10)
sin(kLd )e*- 0 j>d
cos(kLd )e'ikL(j*d) j <—d

U™ (j)oc cos(KLj) -d<j<d .(11)
cos(kLd )eikL(jfd) j>d

For real wave numbers, Eq. (20) leads to the
following equations

cos(2k .Ld)=7F1,

' 12
sin(2kreLd):i2§L(kreL)’ (12)
\Y
that are satisfied simultaneously when
k. =0, (n=integer)
for odd parity (13)

_|2nz/2dL
O = (2n+1)z/2dL for even parity’

and

(@,—2& cosq,—, ) (w,—2& cosq, —A) = Q7. (14)
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Under these circumstances, the probability for
finding the photon outside the sandwiched
region is zero (Eq. 21 and Eq. 22). Indeed Eq.
(25) represents the singularities of the potential
and when it is satisfied there are two infinite
barriers. If the distance between these barriers
is an integer (odd parity) or half-integer (even
parity) multiple of the wavelength of photon, a
standing wave is formed and the photon is
trapped between the barriers. In this case, the
ensembles act as controllable mirrors of a
cavity (super-cavity) where the photon can be
stored inside it by adjusting the oscillation
frequency or the Rabi frequency of the
classical field. Figure 3 represents the

probability|uk (J )|2 versus the cavity number

and the Rabi frequency for an odd parity wave
function. It can be seen that when the
condition given by Eq. (25) is satisfied the
photon is completely confined in the super-
cavity.

Probability |u,(j}|?

Cavity number |

Rabi Frequency O
Fig. 3 Contour plot of the probability for finding the
photon versus the cavity number and the Rabi
frequency of the classical field for the odd parity
resonance state: =1 @,=3,d =8 @, =1, and

gJN =0.5.

V. CONCLUSIONS

By a theoretical study of the discrete 1D
scattering of a single photon from two A-type
atomic ensembles we showed that by adjusting
the oscillation frequency and the Rabi
frequency of the classical field one can
effectively control the transmission spectrum

119

Vol. 4, No. 2, Summer-Fall 2010

of a single photon. In particular, the total
reflection and transmission is achievable and
the system can act as a quantum switch. We
also showed that the two atomic ensembles
can form a cavity with a controllable photon
leakage which provides a method for storing
and retrieving single photon.
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